News 2012
Professor Karl-Peter Hopfner wird für ein Forschungsprojekt zur Reparatur von DNA-Schäden vom Europäischen Forschungsrat (ERC) mit einem bis zu 2,5 Millionen Euro dotierten Advanced Investigator Grant ausgezeichnet. Mit ERC Advanced Grants werden europäische Forscher geehrt, die bereits herausragende Leistungen erbracht haben und für neue hoch innovative Forschungsvorhaben die nötigen Freiheiten erhalten sollen.
Die diesjährige Festveranstaltung zur Verleihung der Römer-Preise findet am 30. November 2012 ab 15.00 Uhr im Buchner-Hörsaal der Fakultät für Chemie und Pharmazie statt. N
Im Zentrum allen Lebens steht die Übersetzung der Gene in Botenmoleküle. Überraschend zeigte sich nun, wie ein molekularer Lotse den Startschuss für die Genabschrift gibt. In den Genen festgelegte Informationen müssen in das Botenmolekül mRNA übersetzt werden, um als Vorlage für die Synthese von Eiweißen (Proteinen) zu dienen. Proteine sind die wichtigsten Funktionsträger der Zelle, daher ist diese Gen-Transkription für alle Lebensvorgänge essentiell. Zuständig für die Abschrift ist das zentrale Enzym Polymerase II (Pol II). Um im Zellkern den Anfang eines Gens zu finden, assoziiert Pol II mit einem Protein, dem Transkriptionsfaktor TFIIB. "Ohne diesen Faktor gibt es keine Transkription", sagt Professor Patrick Cramer, Direktor des Genzentrums der LMU, der mit seinem Team nun zeigen konnte, dass TFIIB nicht nur als Lotse für die Transkription wichtig ist.
Die diesjährige Verleihung der Herbert-Marcinek-Preise, der Daiichi Sankyo Master-Preise, der Abott-Promotionspreise und der Lesmüller-Preise der Dr. August und Dr. Anni Lesmüller-Stiftung findet im Rahmen der akademischen Abschlussfeier des Departments für Pharmazie zur Verabschiedung der Bachelor-, Master- und Staatsexamensstudierenden am 23.11.2012 ab 14:15 Uhr im Buchner-Hörsaal statt.
Halbleiter, die bei Raumtemperatur magnetisch werden, sind Hoffnungsträger im Bereich der Spintronik: Sie sollen die Computertechnologie entscheidend voranbringen. Eine neue Methode könnte nun helfen, diese Materialien zu designen. Während die Halbleitertechnik auf die elektrische Ladung der Elektronen setzt, soll die Spintronik Daten auf der Grundlage des sogenannten Elektronenspins verarbeiten. Diese quantenmechanische Eigenschaft, im klassischen Sinne auch als Eigendrehimpuls bezeichnet, erzeugt ein magnetisches Moment mit zwei möglichen Ausrichtungen, die zur Speicherung von Informationen genutzt werden können. Eine Vielzahl möglicher Anwendungen sind etwa in der Computerindustrie denkbar, darunter die schnellere und effizientere Speicherung und Verarbeitung von Daten - auf noch kleinerem Raum.
Drum prüfe, was sich richtig binde: Die Bindung an ein Zielmolekül ist ausschlaggebend für die Wirkung von Medikamenten. LMU-Forschern ist es nun gelungen, die Stärke dieser Bindungen auf besonders elegante Weise zu messen. In einer Zelle herrscht auf den ersten Blick ein Durcheinander von mehr als 10.000 unterschiedlichen Proteinen. Trotzdem laufen die Reaktionen sehr geordnet ab. Dies funktioniert, weil die Moleküle definierte Bindungen ganz spezifisch nur mit wenigen anderen Molekülen eingehen. So funktionieren auch viele Arzneimittel: Wird für eine Therapie ein Therapeutikum entwickelt, soll der Wirkstoff ausschließlich an die betreffenden Zielmoleküle binden. So lassen sich Dosierung und Nebenwirkungen minimieren
Das landesweite Verbundprojekt "Solar Technologies Go Hybrid" hat seine Arbeit aufgenommen. Im Rahmen einer Auftaktveranstaltung mit Wissenschaftsminister Dr. Wolfgang Heubisch wird das Projekt heute im Münchner Künstlerhaus erstmals der Öffentlichkeit vorgestellt. Mit "Solar Technologies Go Hybrid" fördert der Freistaat Bayern die Erforschung neuer Konzepte zur Umwandlung von Sonnenenergie in Strom und Brennstoffe. Das Forschungsnetzwerk besteht aus gut ausgestatteten Laboren, sogenannten "Key Labs", an den Universitäten Bayreuth, Erlangen-Nürnberg und Würzburg sowie in München an der LMU und der TU. Die Key Labs werden jeweils in bestehende Forschungszentren mit internationaler Reputation integriert und ergänzen sich in ihren Forschungsschwerpunkten. Koordinator des Gemeinschaftsprojekts ist der LMU-Chemiker Professor Thomas Bein.
Die meisten Todesfälle aufgrund von Krebserkrankungen werden durch Metastasen verursacht. Noch gibt es keine Möglichkeit, die Ausbreitung der Krebszellen zu verhindern. Doch Naturstoffe aus Myxobakterien könnten die Antwort sein. Der Kampf gegen Krebs ist mit einer Operation nicht abgeschlossen. Bestrahlung und Chemotherapie sollen verhindern, dass sich Tumorzellen im Körper ausbreiten. Noch gibt es keine ausreichende Therapie, die verhindert, dass sich Metastasen bilden.
Resistente Bakterien stellen ein immer größeres Problem dar. Eine neue Studie belegt, dass ein molekularer "Rausschmeißer" Antibiotika direkt von ihrem Wirkort entfernt - eine wichtige Erkenntnis für die Entwicklung verbesserter Wirkstoffe.Viele bakterielle Infektionen können mit Antibiotika wirkungsvoll bekämpft werden - doch zu häufige Anwendung oder falscher Umgang mit den wertvollen Medikamenten haben Folgen: Immer mehr Bakterien werden resistent. Die Entwicklung neuer wirksamer Medikamente ist also dringend erforderlich.
Der internationale Heinrich-Wieland-Preis honoriert mit 50.000 € herausragende Forschung zu biologisch aktiven Substanzen und Systemen in den Bereichen Chemie, Biochemie und Physiologie sowie Ihrer klinischen Bedeutung. Er wird dieses Jahr an Professor Carolyn Bertozzi, University of California, USA verliehen. Die Preisverleihung findet am Donnerstag, 18.10.2011, 14:00 - 16:00 Uhr im Buchner-Hörsaal der Fakultät statt.
Alle Erbinformationen sind in der DNA festgelegt - aber nicht immer sind alle Gene aktiv. Welche Informationen umgesetzt werden, bestimmen sogenannte regulatorische Sequenzen. Ein neues Verfahren hilft, diese genetischen Schaltzentralen aufzuspüren. Das menschliche Genom umfasst etwa 20 000 Gene - ungefähr so viele, wie auch der winzige Fadenwurm Caenorhabditis elegans besitzt. Nicht die Anzahl der Gene macht nämlich die Komplexität eines Organismus aus, sondern die Regulierung ihrer Expression, also ihrer Aktivität. Gesteuert wird diese durch oft benachbarte regulatorische DNA/RNA-Sequenzen. Entscheidend daran beteiligt sind Regulationsfaktoren, die Informationen übermitteln, indem sie an regulatorische Sequenzen binden.
Research on new explosives focuses on improving safety during production and reducing levels of environmental toxicity. LMU chemists have synthesized a new compound, which is less toxic, more stable and more powerful than conventional explosives.
Propofol ist eines der gängigsten Narkosemittel. Nun ist es gelungen, einen lichtabhängigen Schalter in den Wirkstoff einzubauen - und so bei Kaulquappen dessen Wirkung reversibel zu steuern. Eine mögliche Anwendung ist die Behandlung von Sehstörungen.
Nervenzellen werden an der Weitergabe von Reizen gehindert, indem sogenannte inhibitorische Transmitter das Auslösen eines elektrischen Impulses erschweren. Dieser Effekt wird in der Medizin für die Anästhesie genutzt. Das Narkosemittel Propofol etwa wirkt, indem es die Rezeptoren aktiviert, an die auch der wichtigste inhibitorische Neurotransmitter - GABA - bindet und das Öffnen feiner Ionenkanäle in der Zellmembran bewirkt. Durch diese Kanäle strömen negativ geladene Chloridionen in die Zelle, was eine Hyperpolarisation bewirkt.
Eine von LMU-Forschern entwickelte Screeningmethode ermöglicht eine effiziente Suche nach potenziellen Wirkstoffen mit Hilfe sogenannter dynamischer Substanzbibliotheken - selbst wenn das Zielmolekül nur in sehr geringen Mengen vorliegt.
Für die Wirkung potenzieller Medikamente ist es wichtig, dass der Wirkstoff effizient an seinen Zielort im Organismus bindet. In Bindungsstudien wird daher die Affinität potenzieller Wirkstoffe zum Zielmolekül - dem sogenannten Target - untersucht. Für dieses Screening kommen unterschiedliche Methoden zum Einsatz. Von dem LMU-Pharmazeuten Professor Klaus Wanner entwickelte sogenannte MS-Bindungsstudien haben dabei gegenüber klassischen Techniken den großen Vorteil, ohne radioaktive Isotope auszukommen.
Die beiden LMU-Forscher Professor Mario Halic und Professor Martin Kerschensteiner werden vom Europäischen Forschungsrat (ERC) mit je einem Starting Grant ausgezeichnet. Die Förderung beträgt rund 1,5 Millionen Euro über fünf Jahre.
Erneut werden zwei Nachwuchsforscher der Ludwig-Maximilians-Universität (LMU) München mit je einem Starting Grant des ERC ausgezeichnet. Grundlage für die Entscheidung des Europäischen Forschungsrats ist die wissenschaftliche Exzellenz der Antragsteller sowie des beantragten Projekts. Es muss sich um innovative Forschung handeln: riskant, aber im Erfolgsfall mit einem zukunftsweisenden Erkenntnisgewinn verbunden. Gefordert sind zudem ein hohes Maß an Interdisziplinarität und die Bereitschaft zu kooperieren.
DNA-Schäden können der Zelle dem ganzen Organismus gefährlich werden. Eine neue Arbeit zeigt, dass potentiell durch einen DNA-Doppelstrangbruch geschädigte Genprodukte in einer tödlichen Umarmung landen.
Das Erbmolekül DNA enthält die genetische Information, die wiederum die Bauanleitung für Proteine, also die wichtigsten Funktionsträger der Zelle, vermittelt. Fehler in der DNA können die Protein-Synthese beeinträchtigen und damit schwer wiegende Folgen für die Zelle und den Organismus nach sich ziehen. Deshalb greifen bei DNA-Schäden mehrere hochpräzise Reparaturmechanismen. Ein Team um den LMU-Forscher Professor Klaus Förstemann hat nun in der Fruchtfliege Drosophila eine neuartige zelluläre Reaktion nachgewiesen - als Antwort auf gefährliche Doppelstrang-Brüche.
Die erbliche Augenkrankheit Retinitis pigmentosa führt häufig zur Erblindung, da Sinneszellen der Netzhaut degenerieren. Eine neue Gentherapie verspricht Hoffnung: Bei Mäusen war eine deutliche Besserung langfristig nachweisbar.
In Deutschland leiden etwa 20 000 Menschen unter Retinitis pigmentosa (RP). Die Krankheit beginnt meist im Jugendalter mit Nachtblindheit. Im weiteren Krankheitsverlauf engt sich das Gesichtsfeld immer weiter ein, oft werden die Betroffenen blind. Ursache der RP ist die Degeneration der Fotorezeptoren der Netzhaut: zunächst der Stäbchen, die dem Sehen bei geringer Helligkeit dienen und anschließend der sehr lichtempfindlichen Zapfen, die für die Farbwahrnehmung notwendig sind.
Eines wie keines: LMU-Forscher haben ein Enzym identifiziert, das an einer krankmachenden Modifikation beteiligt ist. Weil dieses Molekül keine Ähnlichkeit zu bekannten Proteinen aufweist, könnte es ganz neue Therapieansätze eröffnen.
Studien an einer Reihe pathogener Bakterien haben gezeigt, dass diese Erreger nur krank machen, wenn zuvor das Enzym EF-P chemisch modifiziert wird. Dieses Enzym ist ein universell konservierter sogenannter Elongationsfaktor und trägt zur Proteinsynthese bei. Verändert wird EF-P durch zwei bereits bekannte Faktoren, die alleine aber nicht den Grad der Veränderung erreichen, der an lebenden Zellen beobachtet wird.
Ob Elektroauto oder E-Bike, entscheidend für den Fahrspaß ist der Akku. Marktführer sind derzeit Lithium-Ionen-Akkus. LMU-Wissenschaftler haben eine Nanostruktur aus Lithium-Titanat entwickelt, die den heutigen Energiespeichern überlegen ist.
Einen guten Akku kennzeichnen vor allem vier Faktoren: Er soll eine hohe Energiedichte besitzen und somit bei geringem Gewicht und Größe viel Energie bereitstellen. Hinzu kommen eine möglichst hohe Leistung und eine schnelle Ladegeschwindigkeit des Akkus. Im Interesse des Nutzers liegt zudem die Stabilität des Energiespeichers, der auch nach 1000 Ladevorgängen noch funktionieren soll.
DNA-Doppelstrangbrüche können zur Entstehung von Tumoren führen. LMU-Wissenschaftler konnten nun die Struktur eines DNA-Reparaturmoleküls aufklären und neue Einsichten in die Pathologie bestimmter Tumore und neurodegenerativer Erkrankungen gewinnen. Doppelstrangbrüche gehören zu den gefährlichsten Schäden am Erbmolekül DNA. Sie entstehen etwa durch Strahlung oder Umweltgifte und können Krebs oder auch neurodegenerative Erkrankungen wie das sogenannte AT-artige Syndrom (ATLD, AT-like disease) auslösen. Effiziente Reparaturmechanismen sind daher für die Zelle essenziell. Ein wichtiger zellulärer Reparaturfaktor ist der sogenannte MRN-Komplex, dessen Struktur nun von einem Team um Professor Karl-Peter Hopfner vom Genzentrum der LMU aufgeklärt werden konnte.
Die zunehmende Miniaturisierung in der Elektronik erfordert neue Materialien. Vielversprechende Kandidaten sind Bauteile aus Kohlenstoff-Nanoröhren, die nun erstmals mit der erforderlichen räumlichen Auflösung optoelektronisch charakterisiert wurden. Die bisher gängige Silizium-basierte Technologie wird bei der fortschreitenden Miniaturisierung in der Elektronik bald an fundamentale physikalisch - technische Grenzen stoßen. Filigrane Hohlzylinder aus Kohlenstoff-Atomen - sogenannte Kohlenstoff-Nanoröhren - haben großes Potenzial, diese Limitierung zu überwinden. Einzelne Kohlenstoff-Nanoröhren könnten in einem Bauteil beispielsweise als Transistor, Lichtabsorber und Licht-Emitter funktionieren.
Am 5. Mai 2012 feierte Prof. Wolfgang Beck, ein Mitglied der Fakultät für Chemie und Pharmazie der LMU München,
seinen 80. Geburtstag. Weitere Informationen finden Sie auf den Seiten der Chemistry Views.
Mit dem Nachtragshaushalt 2012 steigt der Freistaat Bayern in die Erforschung neuer Konzepte zur Umwandlung von Sonnenenergie in Strom und nicht fossile Energieträger ein. Der Bayerische Landtag hat hierfür zunächst sechs Millionen Euro bewilligt. Geplant ist in einem Zeitraum von fünf Jahren ein umfangreiches Verbundforschungsvorhaben mit einem Gesamtvolumen von rd. 50 Millionen Euro. Die zusätzlichen Fördermittel werden in ein Gemeinschaftsprojekt der Universitäten Bayreuth, Erlangen-Nürnberg und Würzburg sowie der Technischen Universität und der Ludwig-Maximilians Universität (LMU) München als grundlegender Beitrag zur Energiewende in Bayern investiert.
Zum Alt-Eisen gehören ausgediente Ribosomen nicht. Nach vollbrachter Arbeit, also der Synthese eines Proteins, werden diese großen Molekülkomplexe aber auch recycelt: Ihre beiden Untereinheiten werden dabei getrennt und kommen erst wieder zusammen, wenn eine neue Syntheserunde ansteht. Ein Team um den Biochemiker Professor Roland Beckmann vom Genzentrum der LMU hat nun das ribosomale Recycling genauer untersucht, um ein evolutionäres Erfolgsrezept zu entschlüsseln.
Den Schmerz einfach abschalten - eine schöne Vorstellung. In Laborversuchen ist es LMU-Chemikern um Dirk Trauner, Professor für Chemische Biologie und Genetik, zusammen mit Kollegen aus Berkeley und Bordeaux jetzt immerhin gelungen, Schmerzneuronen ruhigzustellen - mit einer chemischen Verbindung, die als lichtempfindlicher Schalter funktioniert.
Wenn Nervenzellen miteinander kommunizieren, mischen Neurorezeptoren an entscheidender Stelle bei der Reizleitung mit. Chemiker der Ludwig-Maximilians-Universität (LMU) München und der University of California in Berkeley konnten nun solch eine ursprünglich "blinde" molekulare Maschine künstlich in einen Lichtrezeptor verwandeln. Dazu haben sie das Großmolekül, das im Normalfall auf den chemischen Botenstoff Acetylcholin anspringt, zusätzlich mit einem Schalter aus dem molekularen Baukasten versehen, der auf Licht reagiert.
Blitzschnell und dabei hoch empfindlich: Mit HHblits steht der Proteinforschung ein neues Werkzeug zur Verfügung, das die Analyse von Proteineigenschaften deutlich verbessern kann. LMU-Bioinformatiker um Dr. Johannes Söding vom Genzentrum der LMU entwickelten das neue Verfahren, mit dem verwandte Proteine durch die Ähnlichkeit ihrer Sequenzen - also der Abfolge ihrer Aminosäuren - schneller und genauer aufgespürt werden können als bisher - bei bis zu doppelter Empfindlichkeit.
Am Freitag, den 02.03.2012 findet ein Schülerinfotag für alle an Chemie oder Pharmazie interessierten Schüler statt.