

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

CEP CONTROL OF THE COUPLED NUCLEAR AND ELECTRON DYNAMICS IN THE NUCLEOBASE URACIL

Lena Bäuml, Thomas Schnappinger, Regina de Vivie-Riedle

PROJECT OUTLINE

- controlling population transfer through S_2/S_1 conical intersection (CoIn) with the carrier envelop phase (CEP) [1]
- investigating the coupled nuclear and electron dynamics with NEMol [2,3]
- simulating X-ray absorption spectra (XAS) at oxygen K-edge based on a multi-reference protocol [4]
- follow the coupled dynamics and determine the influence of the electronic coherence using time-resolved XAS

REFERENCES

DFG

- [1] F. Schüppel, et al., J. Chem. Phys. 2020, **153**, 224307.
- [2] L. Bäuml, *et al.*, *Front. Phys.* 2021, **9**, 674573.
- [3] T. Schnappinger, *et al., J.Chem. Phys.* 2021, **154**, 134306.
- [4] F. Rott, et al., Struct. Dyn. 2021, **8**, 034104.

CEP CONTROL

- Coln creates superposition depending on geometric phase (GP)
- steering of population transfer through Coln by few-cycle IR pulse
- optimizing pulse parameters to achieve maximal population transfer
- two different processes contributing to the CEP control
- distinguishable by their periodicity
 - field-only mechanism: asymmetry of electric field creates CEP dependence even without NACs
 - interference mechanism: CEP pulse creating superposition of electronic states forming the CoIn

- starting position at FC geometry
- periodicity of $\pi \rightarrow$ field-only mechanism

- localized wavepacket reaching Coln
- periodicity of $2\pi \rightarrow$ interference mechanism

INTRODUCTION TO NEMOI

- determine the coupled one-electron density [2,3]:

$$\rho(r,t;\langle R\rangle(t)) = \sum_{j} A_{jj}(t) \,\rho_{jj}(r;\langle R\rangle(t))$$

state specific electronic density

coherent electronic density

- NEMol-Grid:

- splitting nuclear coordinate space into segments
- summing up the partial densities of each segment
 - → total electron density coupled to multiple grid points

COUPLED DYNAMICS OF URACIL

- FC (white cross), S_2 min (red dot), Coln (black line)

- first parts reaching Coln around 60 fs

- laser excitation $\pi \to \pi^*$
- fast electron dynamics

- relaxation through Coln $lp \rightarrow \pi$
- much slower electron dynamics

X-RAY ABSORPTION SPECTRA

- oxygen K-edge XAS
- experimentally distinguishable signals excitation: 528 eV (S_0) \rightarrow 523 eV (S_2) S_2 dynamics: 523 eV (FC)
 - → 522 eV (S_2 min) → 525, 527 eV (CoIn)
- peaks at higher energies overshadowed by ionization band and Rydberg series
- oscillation of wavepacket between FC and S_2 min seen by shift of signal at 529 eV (FC) and 533 eV (S_2 min)
- passage through CoIn traceable by loss of intensity of signal at 524 eV characteristic for the S_2 state in general and appearance of shallow signals at 525, 527 eV
- very delocalized nuclear WP

- influence of electronic coherence during whole simulation time
- especially strong when WP is very localized