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ABSTRACT WORKFLOW

a,B-Enones serve as important building blocks in synthetic organic chemistry.
Their excited state reactivity Is highly dependent on their specific structurel1]
and on the coordination environment of the carbonyl oxygen.[2,3] To better
understand how Lewis acids steer the photochemical reactions of these Conformers
compounds, we Investigate two examplary complexes, cyclohexenone-BF; Vibrational
and benzaldehyde-BCl;. Our multidispciplinary study employs nonadiabatic Frequencies
dynamics (augmented fewest switches surface hoppingl4,5]) at a high level of

electronic structure theory (XMS-CASPT2, TDDFT), femtosecond UV/Vis

transient absorption and organic synthesis. The examples demonstrate the

potential of in silico-guided photochemical studies and the predictive power

of modern quantum chemistry for both photochemical reactivity and

spectroscopic properties.
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