

ATOMISTIC CHARACTERIZATION OF THE TUNING MECHANISMS FOR CHLOROPHYLL EXCITATION ENERGIES IN PHOTOSYSTEM 1

Sebastian Reiter and Regina de Vivie-Riedle

ABSTRACT

Our research interest

- ▶ Photosystem 1 (PS1) is one of the most efficient lightharvesting systems found in nature.
- ► The local environment can affect the absorption energy of the individual chlorophylls (site energy).[1,2]
- ► Identifying these chlorophylls can help elucidate the energy transfer mechanisms occuring in PS1 at a microscopic level.

The challenge

- ► Inhomogenous environment requires explicit modelling.
- Accurate site energies are difficult to obtain and there is lack of consensus among studies due to different approximations.

What we present

- ► Site energies in PS1 including dynamics.
- ► A method to elucidate environmental effects on site energies.

ABSORPTION SPECTRA

- ► DFT/MRCI^[4] gives highly accurate spectra for chlorophyll (BHLYP/def2-SVP, E_{sel} =0.8)
- QM/MM scheme (electrostatic embedding):
 - QM: chlorophyll without phytyl chain
 - MM: rest of of PS1 as point charges
- ▶ 20 MD snapshots for each of the 96 chlorophylls
 - → 1920 single point calculations

MODELLING THE PHOTOSYSTEM

- ▶ Trimeric complex embedded in POPC double-layer and water
- Model contains all cofactors, protein residues and crystal water
- Only approximation: incomplete phytyl chains replaced by CH₃
- ► Molecular Dynamics:
 - consistent use of Amber FF
 - 15ns NPT @ 300K, 1bar

Mean RMSD vs. X-Ray [Å]

Crystal structure: 1JB0^[3]

Click for 3D view

The state of the same

SITE ENERGIES IN PSI

Where are the energy sinks?

- ► Average over 20 MD snapshots for each chlorophyll (Q_v)
- Strong fluctuations suggest multiple energy transfer channels
- Asymmetry in special pair is consistent with preferred electron transfer along A-branch (see also poster 171)

ELECTROSTATICS VS. CONFORMATION

► electrostatics red-shift the whole spectrum by ~17 meV

COORDINATION EFFECTS

Protonation of axial ligand can tune electrostatic shift (see also poster 194)

OUTLOOK

- ▶ Determine structural motives that tune site energies
- ► Charge transfer and excitonic coupling (see also poster 171)
- Excited state dynamics of energy transfer pathways

REFERENCES

- [1] J. Adolphs et al., J. Am. Chem. Soc. **2010**, 132, 3331–3343.
- [2] A. Sirohiwal et. al, J. Am. Chem. Soc. **2020**, 142, 18174–18190.
- [3] P. Jordan et al., Nature **2001**, 411, 909–917.
- [4] C. M. Marian et al., WIREs Comput. Mol. Sci. 2019, 9, e1394.