

LUDWIG-INIVERSITÄT

INFLUENCE OF NEIGHBORING NUCLEOBASES ON THE PHOTOSTABILITY OF URACIL

- Quantum Dynamics in Explicit Biological Environments -

Sebastian Reiter, Daniel Keefer and Regina de Vivie-Riedle

ABSTRACT

Our research interest

- ► Photochemical damage in nucleic acids is largely prevented by means of ultrafast relaxation pathways in the five nucleobases
- ► Recent studies elucidate the relaxation process of isolated uracil in the gas phase^[1,2]
- ► Next step: Analyzing the effects of a biological environment on the relaxation path

The challenge

► Appropriate simulation of environmental effects is computationally difficult

What we present

- ► An approach to simulate wave packet dynamics in explicit solvent environments
- ► A comparison of the relaxation pathways of uracil in the gas phase and in its native biological environment

BACKGROUND: GAS PHASE DYNAMICS

according to Ref. [2]

- \triangleright Excitation into bright $\pi\pi^*$ -state (S2)
- \triangleright First relaxation step through conical intersection (CoIn) into dark nπ*-state (S1)
- ► Orthonormal displacement vectors between optimized geometries of Franck-Condon point (FC), S2 min and S1/S2-CoIn (MRCI(12,9)/cc-pVDZ) span coordinate space
- ► Wave packet evolves into direction of S2 min before decaying through CoIn (see filmstrip below)

based on an approach

described in Ref. [3]

extract 25 random

snapshots from

5 MD trajectories

MM

CONSIDERING THE ENVIRONMENT

RNA fragment

Sequence: GAGUAGG

Na⁺-ions

MD simulation Water: TIP3P, RNA: Amber14Sb Simulation time: 100 ps

ground state

environment potential

construct QM/MM PES with two neighboring bases in QM region QM: DFT/M06-2X/6-31G*; MM: Amber14Sb

displaced

uracil

combine environmental PES with high-level S2-PES of uracil in the gasphase MRCI(12,9)/cc-pVDZ^[2]

quantum dynamics in an explicit RNA and solvent environment

ENVIRONMENTAL EFFECTS ON THE PES

- ► Majority of cases: no significant environmental influence
- ► Hydrogen bonds to neighboring bases and to the sugar/phosphate backbone have a strong stabilizing effect
- ► Stabilization can occur localized (PES I) or delocalized (PES II) across the PES, depending on the specific environmental conformation

QUANTUM DYNAMICS

- ► Quantum dynamics with non-adiabatic coupling between S2 and S1 states (MRCI(12,9)/cc-pVDZ)
- ► Sample size: 125 snapshots
- ► Tolerance of \pm 50 fs around the gas phase lifetime (186 fs) defines delay or acceleration
- Most samples resemble the gas phase
- ► Trapping of the wave packet can be induced by the topology of the PES

Example: Quantum Dynamics on PES II (see filmstrip below)

- ► CoIn and barrier are energetically lower than in the gas phase
- ▶ But: collision points on PES give less momentum in the direction of the CoIn
- ► Result: oscillation between FC and S2 min and delayed relaxation

25 fs 50 fs 75 fs 125 fs 0 fs 100 fs 150 fs 175 fs 200 fs

OUTLOOK

- ► Investigate more RNA fragments with different combinations of neighboring bases
- ► Increase number of snapshots to improve phase space sampling
- ► Examine the influence of base-pairing in double-stranded RNA

REFERENCES

- [1] S. Matsika, M. Spanner, M. Kotur, T. C. Weinacht, J. Phys. Chem. A 117, 12796 (2013).
- [2] D. Keefer, S. Thallmair, S. Matsika, R. de Vivie-Riedle, J. Am. Chem. Soc. 139, 5061 (2017).
- [3] S. Thallmair, J. P. P. Zauleck, R. de Vivie-Riedle, J. Chem. Theory Comput. 11, 1987 (2015).

