

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

THE EFFECT OF A MOBILE SOLVENT ENVIRONMENT ON QUANTUM CONTROL OF CHEMICAL REACTIONS

Daniel Keefer and Regina de Vivie-Riedle

QUESTION:

What is the influence of solvent environments on the controllability of chemical reactions? Is it possible to overcome the arising complexities?

ASPECT 1:

QUANTUM CONTROL IN STATIC SOLVENT CAGES

METHODOLOGY

VIBRATIONAL ENERGY LEVELS

Control challenge **#1:** highly imhomogeneous properties

Even highly complex and inhomogeneous targets are controllable!

J. Phys. B 48 (2015), 234003

MD simulation GROMACS/FFOPLSAA

> extract snapshots randomly

freeze solvent molecules

compute PES M062X/6-31G*

IRC path [Å]

Multi-target Hamiltonian:

optimize laser pulses

define target

Optimal Control Theory

BACKGROUND REFERENCES:

QD/MD Procedure: J. Chem. Theory Comput. **11** (2015), 1987

Multi-target OCT

Phys. Rev. Lett. 89 (2002), 157901

Review on the current stage of quantum control simulations: J. Phys. B 50 (2017), 082001

THE REACTION:

Trimethylaluminium + Cyclohexanone

- → preallocated complex
- → methyl group transfer
- → Carbon-carbon bond formation

ASPECT 2:

Is the Reaction Still CONTROLLABLE IF THE **ENVIRONMENT CHANGES** OVER THE PULSE DURATION?

TIME DEPENDENT CONTROL TARGETS

ON WHICH TIMESCALE DOES THE SOLVENT INFLUENCE CHANGE?

- → single MD trajectory
- → extract snapshot every 5 femtoseconds
- → evaluate level structure

≈ 300 fs between extreme cases

Control challenge #2: time-dependent target

control problem

yes

optimized pulse is control

possible?

4 8 time [ps] yes

yes

4 8 time [ps]

yes yes ... even for many more cases and more complex multi-target control aims!

Answer(s):

Chemical reactions in solution seem to be controllable *despite*:

- → highly inhomogeneous line broadening
- → fluctuations of the environment
- ... at least theoretically

NEXT STEPS:

- → improve theoretical description: include feedback from solute to solvent (PO2-15)
- → go beyond one-dimensional coordinates