Faculty for Chemistry and Pharmacy - Group of Prof. Zipse
 

A Typical Gaussian Output File

The first part of the Gaussian output file states in considerable detail the contents of the license agreement. This should be taken seriously. Gaussian 03 is no public domain software!!

 Entering Gaussian System, Link 0=/scr1/g03d1/g03/g03
 Initial command:
 /scr1/g03d1/g03/l1.exe /scr1/zipse/Gau-10554.inp -scrdir=/scr1/zipse/
 Entering Link 1 = /scr1/g03d1/g03/l1.exe PID=     10555.

 Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004, Gaussian, Inc.
                  All Rights Reserved.

 This is the Gaussian(R) 03 program.  It is based on the
 the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
 the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
 the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
 the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
 the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
 the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
 University), and the Gaussian 82(TM) system (copyright 1983,
 Carnegie Mellon University). Gaussian is a federally registered
 trademark of Gaussian, Inc.

 This software contains proprietary and confidential information,
 including trade secrets, belonging to Gaussian, Inc.

 This software is provided under written license and may be
 used, copied, transmitted, or stored only in accord with that
 written license.

 The following legend is applicable only to US Government
 contracts under FAR:

                    RESTRICTED RIGHTS LEGEND

 Use, reproduction and disclosure by the US Government is
 subject to restrictions as set forth in subparagraphs (a)
 and (c) of the Commercial Computer Software - Restricted
 Rights clause in FAR 52.227-19.

 Gaussian, Inc.
 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492


 ---------------------------------------------------------------
 Warning -- This program may not be used in any manner that
 competes with the business of Gaussian, Inc. or will provide
 assistance to any competitor of Gaussian, Inc.  The licensee
 of this program is prohibited from giving any competitor of
 Gaussian, Inc. access to this program.  By using this program,
 the user acknowledges that Gaussian, Inc. is engaged in the
 business of creating and licensing software in the field of
 computational chemistry and represents and warrants to the
 licensee that it is not a competitor of Gaussian, Inc. and that
 it will not use this program in any manner prohibited above.
 ---------------------------------------------------------------


 Cite this work as:
 Gaussian 03, Revision D.01,
 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
 K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
 V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
 G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
 R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
 H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
 V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
 O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
 P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
 V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
 O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
 J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
 J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
 I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
 C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
 B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,
 Gaussian, Inc., Wallingford CT, 2004.

Actual program output specific to a certain calculation starts with a statement of the program version, Gaussian revision (here D.01), system software (here Linux), and the current date. Subsequently the keywords used in the input file are repeated together with other general settings such as the amount of main memory available for the calculations (here 256MB), and the location of a binary checkpoint file for storage of important results (here /scr1/zipse/test1.chk). The "scf=tight" keyword used here specifies tight criteria for the energy calculation and the quantum mechanical method used is "CCSD(T)/6-311+G(d,p)".

 ******************************************
 Gaussian 03:  IA32L-G03RevD.01 13-Oct-2005
                 3-Nov-2007
 ******************************************
 %rwf=/scr1/zipse/z1,1990MB,/scr1/zipse/z2,1990MB,/scr1/zipse/z3,1990MB,/scr1/zip
 se/z4,1990MB
 %nosave
 %nproc=1
 Will use up to    1 processors via shared memory.
 %mem=256MB
 %chk=/scr1/zipse/test1.chk
 ---------------------------------
 #P CCSD(T)/6-311+G(d,p) scf=tight
 ---------------------------------

The keywords are transformed by Gaussian into a sequence of subroutine calls termed "links". The links are given together with the corresponding options set for each link in a proprietary format. Provided that the "#P" option is used in the input file, Gaussian prints out elapsed CPU times after leaving a link.

 1/38=1/1;
 2/17=6,18=5,40=1/2;
 3/5=4,6=6,7=111,11=9,16=1,25=1,30=1/1,2,3;
 4//1;
 5/5=2,32=2,38=5/2;
 8/6=7,9=120000,10=2,27=1043333120/1,4;
 9/5=7,14=2,27=1043333120/13;
 6/7=2,8=2,9=2,10=2/1;
 99/5=1,9=1/99;
 Leave Link    1 at Sat Nov  3 14:40:07 2007, MaxMem=   33554432 cpu:       0.2

In link101 the program reads in or retrieves from the checkpoint file the structure of the system together with other parameters and prints the structure (in a slightly modified format) together with overall charge and spin multiplicity and the comments supplied in the input file. It is good practice to include the name of the input file in the comments of the job. The system chosen here is formaldehyde in its electronic ground state.

 (Enter /scr1/g03d1/g03/l101.exe)
 ------------------------------------------
 test1 CCSD(T)/6-311+G(d,p) sp formaldehyde
 ------------------------------------------
 Symbolic Z-matrix:
 Charge =  0 Multiplicity = 1
 C1
 O2                   1    r2
 H3                   1    r3       2    a3
 H4                   1    r4       2    a4       3    d4       0
       Variables:
  r2                    1.2
  r3                    1.
  r4                    1.
  a3                  120.
  a4                  120.
  d4                  180.

                    Isotopes and Nuclear Properties:
 (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
  in nuclear magnetons)

  Atom         1           2           3           4
 IAtWgt=          12          16           1           1
 AtmWgt=  12.0000000  15.9949146   1.0078250   1.0078250
 NucSpn=           0           0           1           1
 AtZEff=   0.0000000   0.0000000   0.0000000   0.0000000
 NQMom=    0.0000000   0.0000000   0.0000000   0.0000000
 NMagM=    0.0000000   0.0000000   2.7928460   2.7928460
 Leave Link  101 at Sat Nov  3 14:40:08 2007, MaxMem=   33554432 cpu:       0.1

Link202 determines, among others, the symmetry of the system, decides on the symmetry properties that will be used in the actual quantum mechanical calculations and rotates the molecule such that the center of mass is located in the origin of the cartesian coordinate system, the principal axis (so it exists) points along the z-axis, and the principal plane of symmetry (so it exists) is located in the yz-plane. The resulting orientation is printed as "Standard orientation", which serves as the reference description for all information regarding the wavefunction and first and second derivatives of the energy with respect to structural parameters.

 (Enter /scr1/g03d1/g03/l202.exe)
                          Input orientation:
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          6             0        0.000000    0.000000    0.000000
    2          8             0        0.000000    0.000000    1.200000
    3          1             0        0.866025    0.000000   -0.500000
    4          1             0       -0.866025    0.000000   -0.500000
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3          4
     1  C    0.000000
     2  O    1.200000   0.000000
     3  H    1.000000   1.907878   0.000000
     4  H    1.000000   1.907878   1.732051   0.000000
 Stoichiometry    CH2O
 Framework group  C2V[C2(CO),SGV(H2)]
 Deg. of freedom     3
 Full point group                 C2V
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          6             0        0.000000    0.000000   -0.537500
    2          8             0        0.000000    0.000000    0.662500
    3          1             0        0.000000    0.866025   -1.037500
    4          1             0        0.000000   -0.866025   -1.037500
 ---------------------------------------------------------------------
 Rotational constants (GHZ):    334.3034006     40.3785408     36.0270459
 Leave Link  202 at Sat Nov  3 14:40:09 2007, MaxMem=   33554432 cpu:       0.1

link301 loads all components necessary for the actual quantum mechanical part of the calculation.

 (Enter /scr1/g03d1/g03/l301.exe)
 Standard basis: 6-311+G(d,p) (5D, 7F)
 There are    27 symmetry adapted basis functions of A1  symmetry.
 There are     3 symmetry adapted basis functions of A2  symmetry.
 There are    11 symmetry adapted basis functions of B1  symmetry.
 There are    15 symmetry adapted basis functions of B2  symmetry.
 Integral buffers will be    262144 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
    56 basis functions,    88 primitive gaussians,    58 cartesian basis functions
     8 alpha electrons        8 beta electrons
       nuclear repulsion energy        32.2605629825 Hartrees.
 IExCor=   0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX=  1.000000
 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0
 NAtoms=    4 NActive=    4 NUniq=    3 SFac= 1.33D+00 NAtFMM=   80 NAOKFM=F Big=F
 Leave Link  301 at Sat Nov  3 14:40:10 2007, MaxMem=   33554432 cpu:       0.1

link302 calculates a number of integrals necessary for the subsequent SCF (energy) calculation.

 (Enter /scr1/g03d1/g03/l302.exe)
 NPDir=0 NMtPBC=     1 NCelOv=     1 NCel=       1 NClECP=     1 NCelD=      1
         NCelK=      1 NCelE2=     1 NClLst=     1 CellRange=     0.0.
 One-electron integrals computed using PRISM.
 One-electron integral symmetry used in STVInt
 NBasis=    56 RedAO= T  NBF=    27     3    11    15
 NBsUse=    56 1.00D-06 NBFU=    27     3    11    15
 Leave Link  302 at Sat Nov  3 14:40:11 2007, MaxMem=   33554432 cpu:       0.2
 (Enter /scr1/g03d1/g03/l303.exe)
 DipDrv:  MaxL=1.
 Leave Link  303 at Sat Nov  3 14:40:12 2007, MaxMem=   33554432 cpu:       0.0

Before the actual energy calculation is performed, a guess for the wavefunction is obtained using either the Hueckel, the INDO, or the Harris functional method. Alternatively, a guess can also be read from the checkpoint or the input file.

 (Enter /scr1/g03d1/g03/l401.exe)
 Harris functional with IExCor=  205 diagonalized for initial guess.
 ExpMin= 4.38D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=2 IRadAn=         4 AccDes= 0.00D+00
 HarFok:  IExCor= 205 AccDes= 0.00D+00 IRadAn=         4 IDoV=1
 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 Harris En= -113.987168641488
 Initial guess orbital symmetries:
       Occupied  (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2)
       Virtual   (B1) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (B1) (B2)
                 (A1) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (A2) (A1)
                 (B1) (B2) (B1) (A1) (B2) (A1) (B2) (A1) (B1) (A2)
                 (A1) (B2) (A1) (B2) (B1) (A1) (A2) (A1) (B1) (A1)
                 (B2) (A1) (B2) (B1) (B2) (A1) (A1) (A1)
 The electronic state of the initial guess is 1-A1.
 Leave Link  401 at Sat Nov  3 14:40:14 2007, MaxMem=   33554432 cpu:       0.2

Calculation of the HF/6-311+G(d,p) energy of the system is done in link 502. Some parameters such as the currently selected convergence criteria are listed first. The final SCF energy given as E(RHF) = -113.889101153 is the energy of the system with respect to its nuclei and electrons at infinite separation. The energy is given in atomic units (Hartree).

 (Enter /scr1/g03d1/g03/l502.exe)
 Closed shell SCF:
 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Requested convergence on             energy=1.00D-06.
 No special actions if energy rises.
 Using DIIS extrapolation, IDIIS=  1040.
 Integral symmetry usage will be decided dynamically.
 Keep R1 integrals in memory in canonical form, NReq=     2414304.
 IEnd=     28725 IEndB=     28725 NGot=  33554432 MDV=  32081140
 LenX=  32081140
 Symmetry not used in FoFDir.
 MinBra= 0 MaxBra= 2 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.

 Cycle   1  Pass 1  IDiag  1:
 E= -113.807313394624
 DIIS: error= 5.86D-02 at cycle   1 NSaved=   1.
 NSaved= 1 IEnMin= 1 EnMin= -113.807313394624     IErMin= 1 ErrMin= 5.86D-02
 ErrMax= 5.86D-02 EMaxC= 1.00D-01 BMatC= 1.96D-01 BMatP= 1.96D-01
 IDIUse=3 WtCom= 4.14D-01 WtEn= 5.86D-01
 Coeff-Com:  0.100D+01
 Coeff-En:   0.100D+01
 Coeff:      0.100D+01
 Gap=     0.450 Goal=   None    Shift=    0.000
 GapD=    0.450 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
 RMSDP=4.33D-03 MaxDP=6.37D-02              OVMax= 1.09D-01

 Cycle   2  Pass 1  IDiag  1:
 E= -113.872819035612     Delta-E=       -0.065505640988 Rises=F Damp=F
 DIIS: error= 2.49D-02 at cycle   2 NSaved=   2.
 NSaved= 2 IEnMin= 2 EnMin= -113.872819035612     IErMin= 2 ErrMin= 2.49D-02
 ErrMax= 2.49D-02 EMaxC= 1.00D-01 BMatC= 2.48D-02 BMatP= 1.96D-01
 IDIUse=3 WtCom= 7.51D-01 WtEn= 2.49D-01
 Coeff-Com:  0.195D+00 0.805D+00
 Coeff-En:   0.000D+00 0.100D+01
 Coeff:      0.146D+00 0.854D+00
 Gap=     0.557 Goal=   None    Shift=    0.000
 RMSDP=2.40D-03 MaxDP=4.43D-02 DE=-6.55D-02 OVMax= 5.78D-02

 Cycle   3  Pass 1  IDiag  1:
 E= -113.885247170040     Delta-E=       -0.012428134428 Rises=F Damp=F
 DIIS: error= 1.37D-02 at cycle   3 NSaved=   3.
 NSaved= 3 IEnMin= 3 EnMin= -113.885247170040     IErMin= 3 ErrMin= 1.37D-02
 ErrMax= 1.37D-02 EMaxC= 1.00D-01 BMatC= 5.98D-03 BMatP= 2.48D-02
 IDIUse=3 WtCom= 8.63D-01 WtEn= 1.37D-01
 Coeff-Com: -0.103D-01 0.314D+00 0.696D+00
 Coeff-En:   0.000D+00 0.582D-01 0.942D+00
 Coeff:     -0.893D-02 0.279D+00 0.730D+00
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=7.88D-04 MaxDP=1.31D-02 DE=-1.24D-02 OVMax= 2.64D-02

 Cycle   4  Pass 1  IDiag  1:
 E= -113.888949224337     Delta-E=       -0.003702054297 Rises=F Damp=F
 DIIS: error= 2.28D-03 at cycle   4 NSaved=   4.
 NSaved= 4 IEnMin= 4 EnMin= -113.888949224337     IErMin= 4 ErrMin= 2.28D-03
 ErrMax= 2.28D-03 EMaxC= 1.00D-01 BMatC= 1.94D-04 BMatP= 5.98D-03
 IDIUse=3 WtCom= 9.77D-01 WtEn= 2.28D-02
 Coeff-Com: -0.800D-02 0.379D-01 0.209D+00 0.761D+00
 Coeff-En:   0.000D+00 0.000D+00 0.000D+00 0.100D+01
 Coeff:     -0.781D-02 0.370D-01 0.205D+00 0.766D+00
 Gap=     0.517 Goal=   None    Shift=    0.000
 RMSDP=1.69D-04 MaxDP=2.33D-03 DE=-3.70D-03 OVMax= 3.74D-03
 
 Cycle   5  Pass 1  IDiag  1:
 E= -113.889095344984     Delta-E=       -0.000146120647 Rises=F Damp=F
 DIIS: error= 3.40D-04 at cycle   5 NSaved=   5.
 NSaved= 5 IEnMin= 5 EnMin= -113.889095344984     IErMin= 5 ErrMin= 3.40D-04
 ErrMax= 3.40D-04 EMaxC= 1.00D-01 BMatC= 2.72D-06 BMatP= 1.94D-04
 IDIUse=3 WtCom= 9.97D-01 WtEn= 3.40D-03 
 Coeff-Com:  0.139D-02-0.182D-01-0.643D-01-0.109D+00 0.119D+01
 Coeff-En:   0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.100D+01
 Coeff:      0.139D-02-0.181D-01-0.641D-01-0.108D+00 0.119D+01
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=3.99D-05 MaxDP=4.20D-04 DE=-1.46D-04 OVMax= 1.13D-03
 
 Cycle   6  Pass 1  IDiag  1:
 E= -113.889100528448     Delta-E=       -0.000005183463 Rises=F Damp=F
 DIIS: error= 8.99D-05 at cycle   6 NSaved=   6.
 NSaved= 6 IEnMin= 6 EnMin= -113.889100528448     IErMin= 6 ErrMin= 8.99D-05
 ErrMax= 8.99D-05 EMaxC= 1.00D-01 BMatC= 1.89D-07 BMatP= 2.72D-06
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: -0.492D-05 0.173D-02 0.633D-02-0.137D-01-0.246D+00 0.125D+01
 Coeff:     -0.492D-05 0.173D-02 0.633D-02-0.137D-01-0.246D+00 0.125D+01
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=1.31D-05 MaxDP=1.20D-04 DE=-5.18D-06 OVMax= 4.00D-04

 Cycle   7  Pass 1  IDiag  1:
 E= -113.889101058309     Delta-E=       -0.000000529862 Rises=F Damp=F
 DIIS: error= 3.61D-05 at cycle   7 NSaved=   7.
 NSaved= 7 IEnMin= 7 EnMin= -113.889101058309     IErMin= 7 ErrMin= 3.61D-05
 ErrMax= 3.61D-05 EMaxC= 1.00D-01 BMatC= 2.93D-08 BMatP= 1.89D-07
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: -0.111D-03 0.664D-03 0.258D-02 0.796D-02 0.461D-01-0.682D+00
 Coeff-Com:  0.162D+01
 Coeff:     -0.111D-03 0.664D-03 0.258D-02 0.796D-02 0.461D-01-0.682D+00
 Coeff:      0.162D+01
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=6.88D-06 MaxDP=5.50D-05 DE=-5.30D-07 OVMax= 2.31D-04

 Cycle   8  Pass 1  IDiag  1:
 E= -113.889101149066     Delta-E=       -0.000000090757 Rises=F Damp=F
 DIIS: error= 8.23D-06 at cycle   8 NSaved=   8.
 NSaved= 8 IEnMin= 8 EnMin= -113.889101149066     IErMin= 8 ErrMin= 8.23D-06
 ErrMax= 8.23D-06 EMaxC= 1.00D-01 BMatC= 1.48D-09 BMatP= 2.93D-08
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com:  0.416D-04-0.417D-03-0.154D-02-0.401D-02 0.708D-02 0.173D+00
 Coeff-Com: -0.649D+00 0.147D+01
 Coeff:      0.416D-04-0.417D-03-0.154D-02-0.401D-02 0.708D-02 0.173D+00
 Coeff:     -0.649D+00 0.147D+01
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=1.87D-06 MaxDP=2.02D-05 DE=-9.08D-08 OVMax= 5.09D-05

 Cycle   9  Pass 1  IDiag  1:
 E= -113.889101153030     Delta-E=       -0.000000003964 Rises=F Damp=F
 DIIS: error= 1.88D-06 at cycle   9 NSaved=   9.
 NSaved= 9 IEnMin= 9 EnMin= -113.889101153030     IErMin= 9 ErrMin= 1.88D-06
 ErrMax= 1.88D-06 EMaxC= 1.00D-01 BMatC= 3.69D-11 BMatP= 1.48D-09
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: -0.663D-05 0.819D-04 0.356D-03 0.689D-03-0.439D-02-0.180D-01
 Coeff-Com:  0.112D+00-0.410D+00 0.132D+01
 Coeff:     -0.663D-05 0.819D-04 0.356D-03 0.689D-03-0.439D-02-0.180D-01
 Coeff:      0.112D+00-0.410D+00 0.132D+01
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=2.36D-07 MaxDP=3.16D-06 DE=-3.96D-09 OVMax= 4.86D-06

 Cycle  10  Pass 1  IDiag  1:
 E= -113.889101153103     Delta-E=       -0.000000000073 Rises=F Damp=F
 DIIS: error= 1.71D-07 at cycle  10 NSaved=  10.
 NSaved=10 IEnMin=10 EnMin= -113.889101153103     IErMin=10 ErrMin= 1.71D-07
 ErrMax= 1.71D-07 EMaxC= 1.00D-01 BMatC= 7.48D-13 BMatP= 3.69D-11
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com:  0.554D-06-0.978D-05-0.551D-04-0.810D-04 0.973D-03 0.105D-02
 Coeff-Com: -0.149D-01 0.804D-01-0.395D+00 0.133D+01
 Coeff:      0.554D-06-0.978D-05-0.551D-04-0.810D-04 0.973D-03 0.105D-02
 Coeff:     -0.149D-01 0.804D-01-0.395D+00 0.133D+01
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=4.06D-08 MaxDP=4.18D-07 DE=-7.34D-11 OVMax= 8.47D-07


 Cycle  11  Pass 1  IDiag  1:
 E= -113.889101153105     Delta-E=       -0.000000000002 Rises=F Damp=F
 DIIS: error= 3.66D-08 at cycle  11 NSaved=  11.
 NSaved=11 IEnMin=11 EnMin= -113.889101153105     IErMin=11 ErrMin= 3.66D-08
 ErrMax= 3.66D-08 EMaxC= 1.00D-01 BMatC= 2.42D-14 BMatP= 7.48D-13
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com:  0.336D-07-0.310D-06 0.177D-05-0.420D-05-0.635D-04 0.319D-03
 Coeff-Com: -0.663D-03-0.161D-02 0.199D-01-0.166D+00 0.115D+01
 Coeff:      0.336D-07-0.310D-06 0.177D-05-0.420D-05-0.635D-04 0.319D-03
 Coeff:     -0.663D-03-0.161D-02 0.199D-01-0.166D+00 0.115D+01
 Gap=     0.518 Goal=   None    Shift=    0.000
 RMSDP=3.21D-09 MaxDP=3.93D-08 DE=-1.73D-12 OVMax= 1.05D-07

 SCF Done:  E(RHF) =  -113.889101153     A.U. after   11 cycles
             Convg  =    0.3210D-08             -V/T =  1.9980
             S**2   =   0.0000
 KE= 1.141150827861D+02 PE=-3.332657933232D+02 EE= 7.300104640147D+01
 Leave Link  502 at Sat Nov  3 14:40:16 2007, MaxMem=   33554432 cpu:       1.3

links 801 and 804 are responsible for the transformation of AO integrals into the the MO basis and calculating the MP2 energy. In this example the two lowest occupied orbitals correspond closely to those of the 1s core electrons of C and O, both of which make little contribution to the bonds formed between atoms. In the correlation energy calculation the lowest two occupied MOs are therefore excluded, leaving oritals 3 - 56 for consideration in the correlation energy calculation. These include 6 occupied MOs and 48 empty MOs.

The MP2 energy calculation reports the sum of the Hartree-Fock energy (here E(RHF) = -113.889101153 au) and the MP2 correlation energy (here E2 = -0.3360370662 au) as "EUMP2= -0.11422513821931D+03". The MP2 correlation energies arising from parallel-spin components (E2(alpha-alpha), E2(beta-beta)) and anti-parallel spin components (E2(alpha-beta)) are also given.

 (Enter /scr1/g03d1/g03/l801.exe)
 Windowed orbitals will be sorted by symmetry type.
 ExpMin= 4.38D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=         5 AccDes= 0.00D+00
 HarFok:  IExCor= 205 AccDes= 0.00D+00 IRadAn=         5 IDoV=1
 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 Largest valence mixing into a core orbital is  1.11D-04
 Largest core mixing into a valence orbital is  2.89D-05
 Range of M.O.s used for correlation:     3    56
 NBasis=    56 NAE=     8 NBE=     8 NFC=     2 NFV=     0
 NROrb=     54 NOA=     6 NOB=     6 NVA=    48 NVB=    48
 Leave Link  801 at Sat Nov  3 14:40:17 2007, MaxMem=   33554432 cpu:       0.5
 (Enter /scr1/g03d1/g03/l804.exe)
 Closed-shell transformation, MDV=    33554432 ITran=7 ISComp=2.
 Estimate disk for full transformation     7490906 words.
 Compute canonical integrals, LenV=    30612293.
 Symmetry not used in FoFDir.
 MinBra= 0 MaxBra= 2 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.
 DTSort:  JobTyp= 0 ITran= 5.
 Spin components of T(2) and E(2):
     alpha-alpha T2 =       0.1209999825D-01 E2=     -0.4194645830D-01
     alpha-beta  T2 =       0.7379947908D-01 E2=     -0.2521441496D+00
     beta-beta   T2 =       0.1209999825D-01 E2=     -0.4194645830D-01
 ANorm=    0.1047854702D+01
 E2=       -0.3360370662D+00 EUMP2=       -0.11422513821931D+03
 Leave Link  804 at Sat Nov  3 14:40:21 2007, MaxMem=   33554432 cpu:       3.2

Higher-order MPn calculations as well as the coupled cluster calculations are performed by link 913. The final energy reported as "CCSD(T)= -0.11424949313D+03" is the sum of the Hartree-Fock energy and the CCSD(T) correlation energy.

 (Enter /scr1/g03d1/g03/l913.exe)
 CIDS:  MDV=  33554432.
 Using DD3R+UMP44R for 1st iteration, S=T.
 Using DD4RQ for 2nd and later iterations.
 CCSD(T)
 =======
 Iterations=  50 Convergence= 0.100D-06
 Iteration Nr.   1
 **********************
 MP4(R+Q)=  0.54220949D-02
 Maximum subspace dimension=  5
 Norm of the A-vectors is  4.6101174D-01 conv= 1.00D-05.
 RLE energy=       -0.3348821167
 E3=       -0.45303970D-02        EUMP3=      -0.11422966862D+03
 E4(DQ)=   -0.35144701D-02        UMP4(DQ)=   -0.11423318309D+03
 E4(SDQ)=  -0.86183109D-02        UMP4(SDQ)=  -0.11423828693D+03
 VARIATIONAL ENERGIES WITH THE FIRST-ORDER WAVEFUNCTION:
 DE(Corr)= -0.33487835     E(CORR)=     -114.22397950
 NORM(A)=   0.10496522D+01
 Iteration Nr.   2
 **********************
 Norm of the A-vectors is  1.4566058D-01 conv= 1.00D-05.
 RLE energy=       -0.3472921062
 DE(Corr)= -0.34642266     E(CORR)=     -114.23552381     Delta=-1.15D-02
 NORM(A)=   0.10552621D+01
 Iteration Nr.   3
 **********************
 Norm of the A-vectors is  5.3180260D-02 conv= 1.00D-05.
 RLE energy=       -0.3480598807
 DE(Corr)= -0.34699465     E(CORR)=     -114.23609581     Delta=-5.72D-04
 NORM(A)=   0.10570296D+01
 Iteration Nr.   4
 **********************
 Norm of the A-vectors is  1.8146650D-02 conv= 1.00D-05.
 RLE energy=       -0.3482022378
 DE(Corr)= -0.34810785     E(CORR)=     -114.23720900     Delta=-1.11D-03
 NORM(A)=   0.10575378D+01
 Iteration Nr.   5
 **********************
 Norm of the A-vectors is  5.7477026D-03 conv= 1.00D-05.
 RLE energy=       -0.3482599870
 DE(Corr)= -0.34823177     E(CORR)=     -114.23733292     Delta=-1.24D-04
 NORM(A)=   0.10576964D+01
 Iteration Nr.   6
 **********************
 Norm of the A-vectors is  1.6816297D-03 conv= 1.00D-05.
 RLE energy=       -0.3482409850
 DE(Corr)= -0.34824835     E(CORR)=     -114.23734950     Delta=-1.66D-05
 NORM(A)=   0.10577022D+01
 Iteration Nr.   7
 **********************
 Norm of the A-vectors is  6.8587578D-04 conv= 1.00D-05.
 RLE energy=       -0.3482451283
 DE(Corr)= -0.34824865     E(CORR)=     -114.23734980     Delta=-2.97D-07
 NORM(A)=   0.10577048D+01
 Iteration Nr.   8
 **********************
 Norm of the A-vectors is  2.8618460D-04 conv= 1.00D-05.
 RLE energy=       -0.3482467433
 DE(Corr)= -0.34824713     E(CORR)=     -114.23734828     Delta= 1.52D-06
 NORM(A)=   0.10577061D+01
 Iteration Nr.   9
 **********************
 Norm of the A-vectors is  8.4445786D-05 conv= 1.00D-05.
 RLE energy=       -0.3482473253
 DE(Corr)= -0.34824742     E(CORR)=     -114.23734857     Delta=-2.92D-07
 NORM(A)=   0.10577067D+01
 Iteration Nr.  10
 **********************
 Norm of the A-vectors is  3.1277283D-05 conv= 1.00D-05.
 RLE energy=       -0.3482476331
 DE(Corr)= -0.34824759     E(CORR)=     -114.23734875     Delta=-1.72D-07
 NORM(A)=   0.10577071D+01
 Iteration Nr.  11
 **********************
 Norm of the A-vectors is  1.1873629D-05 conv= 1.00D-05.
 RLE energy=       -0.3482478085
 DE(Corr)= -0.34824777     E(CORR)=     -114.23734892     Delta=-1.74D-07
 NORM(A)=   0.10577073D+01
 Iteration Nr.  12
 **********************
 Norm of the A-vectors is  4.8492764D-06 conv= 1.00D-05.
 RLE energy=       -0.3482478440
 DE(Corr)= -0.34824782     E(CORR)=     -114.23734897     Delta=-4.96D-08
 NORM(A)=   0.10577075D+01
 Largest amplitude= 6.53D-02
 Time for triples=        7.05 seconds.
 T4(CCSD)= -0.13125194D-01
 T5(CCSD)=  0.98103089D-03
 CCSD(T)= -0.11424949313D+03
 Leave Link  913 at Sat Nov  3 14:40:40 2007, MaxMem=   33554432 cpu:      17.0

Selected information on the optimized (in this case: the RHF) wavefunction is printed along with a Mulliken population analysis in link 601.

 (Enter /scr1/g03d1/g03/l601.exe)
 Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0.

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 Orbital symmetries:
       Occupied  (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2)
       Virtual   (A1) (B1) (B2) (A1) (B1) (A1) (A1) (B2) (B1) (B2)
                 (A1) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (A2) (A1)
                 (B1) (B2) (B1) (B2) (A1) (A1) (B2) (A1) (B1) (A2)
                 (A1) (B2) (A1) (B2) (A1) (B1) (A2) (A1) (B1) (A1)
                 (B2) (A1) (B2) (B1) (B2) (A1) (A1) (A1)
 The electronic state is 1-A1.
 Alpha  occ. eigenvalues --  -20.57267 -11.31867  -1.41040  -0.90302  -0.73010
 Alpha  occ. eigenvalues --   -0.65365  -0.53526  -0.45053
 Alpha virt. eigenvalues --    0.06768   0.07503   0.09228   0.09947   0.15913
 Alpha virt. eigenvalues --    0.26774   0.27807   0.29275   0.32300   0.33538
 Alpha virt. eigenvalues --    0.38400   0.45747   0.64151   0.65204   0.70120
 Alpha virt. eigenvalues --    0.86897   0.87347   1.03742   1.25205   1.26286
 Alpha virt. eigenvalues --    1.32493   1.32512   1.53828   1.68527   1.69207
 Alpha virt. eigenvalues --    1.71295   1.91925   2.05933   2.07436   2.20698
 Alpha virt. eigenvalues --    2.43304   2.57655   2.91448   2.99821   3.00630
 Alpha virt. eigenvalues --    3.04623   3.27341   3.31324   3.73669   3.87955
 Alpha virt. eigenvalues --    3.92616   4.32091   4.33839   5.54728   5.62325
 Alpha virt. eigenvalues --    6.23975  25.22363  51.63964
          Condensed to atoms (all electrons):
              1          2          3          4
     1  C    4.576830   0.435334   0.422903   0.422903
     2  O    0.435334   8.020625  -0.063934  -0.063934
     3  H    0.422903  -0.063934   0.634652  -0.086652
     4  H    0.422903  -0.063934  -0.086652   0.634652
 Mulliken atomic charges:
              1
     1  C    0.142030
     2  O   -0.328091
     3  H    0.093031
     4  H    0.093031
 Sum of Mulliken charges=   0.00000
 Atomic charges with hydrogens summed into heavy atoms:
              1
     1  C    0.328091
     2  O   -0.328091
     3  H    0.000000
     4  H    0.000000
 Sum of Mulliken charges=   0.00000
 Electronic spatial extent (au):  =    57.7075
 Charge=     0.0000 electrons
 Dipole moment (field-independent basis, Debye):
    X=     0.0000    Y=     0.0000    Z=    -3.0069  Tot=     3.0069
 Quadrupole moment (field-independent basis, Debye-Ang):
   XX=   -11.4910   YY=   -11.3088   ZZ=   -12.0822
   XY=     0.0000   XZ=     0.0000   YZ=     0.0000
 Traceless Quadrupole moment (field-independent basis, Debye-Ang):
   XX=     0.1364   YY=     0.3185   ZZ=    -0.4549
   XY=     0.0000   XZ=     0.0000   YZ=     0.0000
 Octapole moment (field-independent basis, Debye-Ang**2):
  XXX=     0.0000  YYY=     0.0000  ZZZ=    -0.9273  XYY=     0.0000
  XXY=     0.0000  XXZ=     0.1254  XZZ=     0.0000  YZZ=     0.0000
  YYZ=    -0.9417  XYZ=     0.0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
 XXXX=   -10.0799 YYYY=   -15.4294 ZZZZ=   -42.3455 XXXY=     0.0000
 XXXZ=     0.0000 YYYX=     0.0000 YYYZ=     0.0000 ZZZX=     0.0000
 ZZZY=     0.0000 XXYY=    -4.5222 XXZZ=    -8.6591 YYZZ=    -9.4448
 XXYZ=     0.0000 YYXZ=     0.0000 ZZXY=     0.0000
 N-N= 3.226056298246D+01 E-N=-3.332657937173D+02  KE= 1.141150827861D+02
 Symmetry A1   KE= 1.037242308388D+02
 Symmetry A2   KE= 4.472914659467D-35
 Symmetry B1   KE= 3.451255845323D+00
 Symmetry B2   KE= 6.939596102006D+00
 Leave Link  601 at Sat Nov  3 14:40:41 2007, MaxMem=   33554432 cpu:       0.1

At the very end of each Gaussian calculation, an archive entry in a very compact format is printed to summarize the results. This archive entry is frequently used as supplemental material in publications of theoretical results.

(Enter /scr1/g03d1/g03/l9999.exe)
1\1\GINC-Z7\SP\RCCSD(T)-FC\6-311+G(d,p)\C1H2O1\ZIPSE\03-Nov-2007\0\\#P
 CCSD(T)/6-311+G(d,p) scf=tight\\test1 CCSD(T)/6-311+G(d,p) sp formald
ehyde\\0,1\C\O,1,1.2\H,1,1.,2,120.\H,1,1.,2,120.,3,180.,0\\Version=IA3
2L-G03RevD.01\State=1-A1\HF=-113.8891012\MP2=-114.2251382\MP3=-114.229
6686\MP4D=-114.2386052\MP4DQ=-114.2331831\MP4SDQ=-114.2382869\CCSD=-11
4.237349\CCSD(T)=-114.2494931\RMSD=3.210e-09\Thermal=0.\PG=C02V [C2(C1
O1),SGV(H2)]\\@

From a database of citations, Gaussian prints one entry together with some timing and file size information.

 TOWERING GENIUS DISDAINS A BEATEN PATH.  IT SEEKS
 REGIONS HITHERTO UNEXPLORED.

                                -- ABRAHAM LINCOLN
 Job cpu time:  0 days  0 hours  0 minutes 33.6 seconds.
 File lengths (MBytes):  RWF=     26 Int=      0 D2E=      0 Chk=      7 Scr=      1
 Normal termination of Gaussian 03 at Sat Nov  3 14:40:42 2007.