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Abstract

Sugars are an ubiquitous energy source for almost all living organisms. There is a close rela-
tionship between the metabolic demand of these sugars and the physiopathological condition
of a cell, hence sugar uptake is of high interest in biomedical research. In recent time, di�erent
imaging approaches haven been developed to get insight into the biological mechanisms
of metabolism, transport and storage of sugars. Advanced �uorescence microscopy is com-
monly employed to obtain information about protein dynamics and enzyme activities such as
membrane transporters at the single-molecule level. Confocal Raman microscopy has proven
to be a powerful tool to chemically analyze cells in vivo while allowing video-rate imaging
in a noninvasive manner. To bene�t best from both imaging techniques at the same time,
the groundwork for a new imaging technology is laid in this thesis which will combine the
advantages of �uorescence and Raman microscopy on a single setup. A dual-color confocal
microscope including an additional multiphoton excitation path and a new detection unit was
constructed. Characterization of the home-built system was performed via �uorescence cor-
relation spectroscopy and confocal scanning microscopy. To monitor sugar uptake by Raman
scattering, a database was acquired containing Raman spectra of solvents, conventional and
Raman-labeled sugars This served to develop a software for the quanti�cation of sugars by
performing principle component analysis and estimate their detection limit via simulations.
Successful culturing of living cells with Raman-labeled sugars and examination via confocal
Raman microscopy was achieved.
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1. Introduction

Sugars play a fundamental role in living organisms, as they are the primary source of metabolic
energy and carbon skeletons for the biosynthesis of many other cellular compounds. Among
all sugars, glucose is obtained in the largest quantity either from the diet or from synthesis in
organs such as the liver. All types of sugars are transported inside the organism via the blood
stream and must pass the plasma membrane of individual cells before they can be metabolized.
Due to its lipid backbone, the cellular membrane is impermeable to sugar molecules which all
possess polar and hydrophilic properties. Thus, membrane-associated carrier proteins are
required for regulating the in�ux and e�ux of sugars. There are two identi�ed families of
transporters distinguished by their main working mechanism, namely SGLT (solute carrier
family 5, sodium-glucose symporter) and GLUT (solute carrier family 2, facilitated glucose
uniporter). The SGLT proteins actively transport sugars against gradient concentration by
exploiting the electrochemical potential generated by the Na+-K+ pump which needs energy
via ATP hydrolysis.[1,2] The GLUT proteins facilitate the di�usion of sugars by utilizing their
naturally occurring concentration gradients at no energy cost.[3–6] Since the GLUT family
controls the primary sugar uptake from blood into cells, these transporters are of special
interest in the research of cancer, diabetes and the corresponding therapies.[7–16] For example,
cancer cells show an increased consumption of glucose which is paralleled by the raised
expression level of the GLUT transporter proteins.[17,18] On the other hand, lower expression
levels and impaired function of GLUT4 transporters have been linked to diabetes.[14] Various
methods have been used to obtain information about the function of sugar transporters and
monitor their transport rates. These include probing changes in cell volume induced by
sugar, electrophysiology, mass spectrometric analyses and using enzyme-linked markers of
the cellular sugar content.[19] One of the most popular techniques is using radioisotopically
labeled tracer sugars.[20] However, these approaches usually share common disadvantages such
as insu�cient characterization of animal transporters, limited temporal and spatial resolution
and the demand of large numbers of cells, hence inhibiting the examination of physiologically
diverse membrane transporters on a single cell level. Furthermore, the actual functioning of
many transporters and their interactions with sugar molecules are still unknown. Studying
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1. INTRODUCTION

sugar-protein interactions, sugar transport and storage in form of glycans by visualization
of di�erent sugar moieties remains a major challenge. In recent developments, �uorescent
transport activity sensors have been employed to measure the activity of a transporter in
vivo as a change in �uoresescence intensity.[21–23] Although subcellular resolution can be
achieved by these techniques, only the transporters themselves can be examined. Additionally,
�uorescent microscopy depends on the expression of �uorescent molecules via external genes,
which can directly in�uence cell physiology and thus may not re�ect the natural cellular
conditions.[24,25] Due to the large size of �uorophores and intracellular sugar concentrations
ranging from µM tomM, sugar uptake is immensely impaired if �uorescent labeling techniques
are used. Therefore, a novel imaging technology is needed which is capable of noninvasively
probing sugars during transport, metabolism and storage. One of the most promising tools
to address these challenges is Raman spectroscopy, which allows the determination of the
chemical structure of a cell including proteins, lipids and DNA in a label free manner.[26–30]

The main limitation of Raman spectroscopy is the inherently weak signal obtained from
spontaneous Raman scattering. Nonetheless, several technological advancements regarding
the instrumentation used for detection and especially the development of ultrashort pulse
lasers are able to overcome this problem. Modern femtosecond pulsed lasers can be used
to generate multiple nonlinear e�ects such as second-harmonic generation (SHG), multi-
photon absorption, coherent anti-stokes Raman scattering (CARS) and stimulated Raman
scattering (SRS). In particular, SRS microscopy has emerged as a powerful technique in life
and pharmaceutical sciences as well as a diagnostic tool in medicine.[31–37] Still, since the
Raman signal of normal sugars is obscured by all other signals of the cell, sugar molecules
must be di�erentiated in some way for adequate identi�cation and quanti�cation. Suitable
Raman-labels are nitride, nitrile and alkyne moieties as they are small and exhibit an intense
Raman scattering within the Raman-silent region of a cell.[38–40] Using the advantages of both
confocal �uorescence microscopy and Raman microscopy in a single setup for elucidating
the �eld of sugar transporters and sugar metabolism is an intriguing idea. It would allow for
numerous excitation and detection options, thereby facilitating the imaging and analysis of
molecular species over the full concentration range.

In this thesis, the main goal is to lay the groundwork for a multimodal microscope setup
which is dedicated for sugar imaging at the single cell level. The designed setup combines
single molecule �uorescence based imaging with nonlinear microscopy and will include the
implementation of stimulated Raman imaging in the new future. Within the framework of
this thesis, a dual-color confocal microscope with extension for multiphoton imaging using a
dual-femtosecond pulsed IR laser and a new detection unit has been successfully developed.
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1. INTRODUCTION

Its modular design is open for further modi�caitons and facilitates the integration of coherent
Raman imaging. To study the cellular sugar uptake by Raman scattering, a database comprised
of spontaneous Raman spectra of solvents, conventional and Raman-labeled sugars has been
established. With this data at hand, �rst software for data acquisition and analysis has
been developed to quantify the concentration of di�erent sugars. Moreover, based on the
experimentally recorded data, simulations have been conducted to estimate the detection limit
of a Raman-labeled sugar under various conditions and elicit the feasibility of quantifying
sugars in cells. Finally, living cells have been successfully cultured with Raman-labeled sugars
and examined using a scanning confocal Raman microscope. Simulations and hyperspectral
data obtained from live cell measurements have been analyzed by chemiometric methods,
including principle component analysis (PCA) which has been implemented using MATLAB.
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2. Theory

In this work, di�erent spectroscopic techniques and imaging modes are employed. The
following chapter treats their theoretical background. First, di�erent types of light matter
interaction will be discussed, starting from �uorescence, including one- and multiphoton
processes, to scattering processes as Raman scattering. The second part deals with imaging, in
particular confocal scanning microscopy and chemiometric data analysis which is employed
to quantitatively analyze sugar in living cells.

2.1. Fluorescence

2.1.1. Overview of Absorption and Emission Processes

Fluorescence can be described as the spontaneous emission of electromagnetic radiation
shortly after the excitation of a �uorescent molecule, often denoted as �uororphore. Figure 2.1
shows a Jablonski diagram, which is commonly used to illustrate di�erent processes of light
absorption and emission. If a �uorophore absorbs a photon of a speci�c wavelength, an orbital
electron is excited from its ground state S0 to a higher quantum state S1 or S2. The same energy
transition can occur if the energy of two photons match the energy gap between the ground
and excited state. In this case, two photons are absorbed simultaneously via an intermediate
virtual state. At each quantum state the electron can occupy several vibrational energy levels.
At room temperature molecules are electronically in the S0 state. After absorption of a photon,
a common excitation path is the transition from S0 to a higher vibrational level of S1. Since a
�uorophore undergoes billions of collisions per second with surrounding molecules, it relaxes
rapidly to the vibrational ground state of S1 within picoseconds. In this so called internal
conversion, no photons are emitted and the spin state does not change. The radiationless
transition from the singlet state S1 to the triplet state T1 via spin conversion is known as
intersystem crossing, At a duration in the range of 10−8 s–10−3 s, intersystem crossing is a
relatively slow process compared to internal conversion.[41] The relaxation from S1 to S0 is
termed �uorescence. It is accompanied by an emission of a photon and occurs on a time scale
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2. THEORY

of nanoseconds. Phosphorescence describes the emission of light by relaxation from T1 to S0,
which is a forbidden transition and therefore occurs at a low probability. Consequently, the
time scale of phosphorescence can be up to a couple of minutes or hours.

Figure 2.1. | Jablonski diagram: Excitation and relaxation pathways of one-photon (blue) and two-
photon absorption (red), vibrational relaxation (dark red), internal conversion (black),
�uorescence (green), phosphorescence (orange) and intersystem crossing between the
excited singlet and triplet states (purple). Radiationless transitions are represented by
dashed lines.

2.1.2. The Franck-Condon principle and Stokes shi�

The Franck-Condon principle is a quantum mechanical law, which explains the intensities of
vibrational transitions and can also be applied to the absorption and emission of a photon.
It states that the probability of a vibrational transition depends on the overlap of the wave
functions of the initial and the �nal energy level after excitation. A core assumption of the
Franck-Condon principle is that during an electronic transition, occurring on a timescale of
femtoseconds, the relatively slow movement of the nucleus can be neglected, i.e. the wave
function does not change. This assumption is known as the Born-Oppenheimer approximation
and is mathematically expressed by separating the electronic and vibrational wave functions.
The states S0 and S1 shown in 2.2a can be described as the product of the vibrational, electronic
and spin wave functions:

	 = 	e	v	s (2.1)
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2. THEORY

The probability amplitude P of a transition can be calculated by the scalar product of the
initial state |	⟩ and the �nal state |	 ′⟩:

P = ⟨	 ′|�|	⟩ (2.2)

where � is the molecular dipole operator, given by the sum of the charges and locations of
the electrons and nuclei:

� = �e + �N (2.3)

Equation 2.2 can be written as:

P = ⟨	 ′
e	 ′

v	 ′
s |�e |	e	v	s⟩ + ⟨	 ′

e	 ′
v	 ′

s |�N |	e	v	s⟩ (2.4)

= ⟨	 ′
v |	v⟩⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

vibrational
overlap
integral

∙ ⟨	 ′
e |�e |	e⟩⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
orbital

selection
rule

∙ ⟨	 ′
s |	s⟩⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
spin

selection
rule

+ ⟨	 ′
e |	e⟩⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
0

∙ ⟨	 ′
v |�N |	v⟩ ∙ ⟨	 ′

s |	s⟩ (2.5)

Since the two wave functions 	e and 	 ′
e describe two di�erent electronic states, they are

orthogonal and the integral ⟨	 ′
e |	e⟩ is equal to zero. The square of the vibrational overlap

integral ⟨	 ′
v |	v⟩ is proportional to the intensity of a vibrational transition between two

di�erent electronic states. The quantities |⟨	 ′
v |	v⟩|2 are called Franck-Condon factors. Figure

2.2a shows the energy diagram of the transitions between v = 0 and v = 2 which are equally
favored. This principle applies to other transitions as well, resulting in an approximate mirror
symmetry in the absorption and emission spectra, which is illustrated in 2.2b. In general,
sharp peaks are observed for cold and dilute gases whereas solid curves are usually caused by
inhomogeneous broadening occurring in liquids and solids.[42] In case of �uorescence, the
emission spectrum is independent of the excitation wavelength, which can also be explained
by the Franck-Condon principle. Due to the strong overlap of the vibrational wave functions
of almost equal energy, the relaxation to the S1 state occurs on a time scale three orders of
magnitude shorter than �uorescence. Hence, emitted photons mainly originate from the
lowest excited state regardless of the excitation wavelength. This phenomenon is also referred
to as Kasha’s rule. Vibrational relaxation causes the emission spectrum of a �uorophore
to shift to higher wavelengths and lower energies compared to the absorption spectrum.
Additional energy loss is caused by the realignment of the dipole moments of the solvent and
the �uorophore occuring after the vibrational relaxation. The total energy di�erence between
the absorption and emission spectra is called Stokes shift and is experimentally observed as a
shift between the maxima of absorption and emission spectrum.
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2. THEORY

Therefore, the Stokes shift also allows to separate excitation and emission in a confocal
microscope using dichroic mirrors.

Figure 2.2. | Franck-Condon-Principle: (a) The transitions depicted by arrows are favored due to
higher overlap of the vibrational wave functions. (b) Illustration of vibrational transitions
in absorption and emission spectra of dilute gases (transparent narrow lines) and liquids
(solid lines).[42]

2.1.3. �antum yield and fluorescence lifetime

The �uorescence quantum yields and �uorescence lifetimes of �uorophores are essential
parameters in experiments. The �uorescence quantum yield QF can be interpreted as the
probability of the relaxation from the S1 state to the S0 state via �uorescence and is de�ned
by the ratio of emitted photons to absorbed photons:

QF =
Γ

Γ + knr
(2.6)

where Γ represents the radiative decay rate and knr the radiationless decay rate. QF can also be
an indicator for the brightness of a �uorophore. In experiments, the intensity can be reduced
by numerous processes, which are referred to as quenching. These intensity diminishing
mechanisms such as collisional quenching, Förster resonance energy transfer (FRET) and
complex formation generally depend on the environmental conditions.[43] The time available
for the observation of one �uorophore depends on a di�erent property, the �uorescence
lifetime.
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2. THEORY

It is de�ned as the average time � a �uorophore stays in the S1 state, which usually follows
an exponential decay:

S1(t) = S1(0) ∙ e−t/� (2.7)

where the �uorescence lifetime � is given by the reciprocal value of the sum of all decay rates
depopulating the S1 state:

� = 1
Γ + knr

(2.8)

2.2. Two-Photon Absorption

As mentioned in section 2.1.1, two incident photons can be absorbed by a �uorophore si-
multaneously to excite an electron from the ground state to an excited state. The theory
behind this phenomenon was �rst developed by Göppert-Mayer in 1931.[44] Experimental
conformation was achieved in 1961 after the development of pulsed lasers reaching the re-
quired local intensity through high spacial and temporal overlap of the incident photons.[45]

Two-photon excitation (TPE) has several advantages over one-photon excitation (OPE) such
as UV excitation without using a UV source and greater depth penetration for deep tissue
imaging. Additionally, the high photon �ux required for two-photon absorption exists only
in vicinity of the focal region. Hence, optical sectioning is achieved without the use of a
pinhole and photo-bleaching is considerably reduced. TPE is a nonlinear optical phenomenon
and follows di�erent selection rules compared to one-photon excitation. The probability
of a �uorophore absorbing one or multiple photons can be directly related to its electric
susceptibility � , i.e. the degree of polarization induced by the electric �eld of the laser light.
Considering the high intensities obtained from pulsed lasers, � becomes a function of the
electric �eld E and the polarization P can be expressed by a Taylor series expansion of � (E):

P(E) = �0 (� (1)E + � (2)E2 + � (3)E3 + ...) (2.9)

Here, �0� (1)E corresponds to linear polarization, i.e. OPE, and the following susceptibility
terms � (n) describe the n-th order nonlinearity resulting in (n + 1)-wave-mixing. In case of
TPE, the induced polarization depends on the third order term �0� (3)E3. Since two electric
�eld vectors are needed to describe the interaction with a �uorophore, TPE shows a greater
dependency on the angle between polarization of the laser beam and the transition dipole
moment of the �uorophore leading to a higher degree of photoselection.

8



2. THEORY

In quantum mechanical terms, the transition probability Γ between the initial state |i⟩ and the
�nal state | f ⟩ is described by the following equation and shows the quadratic dependency on
the incident photon density:

Γi→f ∼
||||
∑
m

⟨f | E⃗
 ⋅ r⃗ |m⟩ ⟨m| E⃗
 ⋅ r⃗ |i⟩
�
 − �m

||||

2
(2.10)

where the summation is over all intermediate states m, �m is the energy di�erence between
the state m and the ground state, r⃗ is the position operator, E⃗
 is the electric �eld vector and �

is the corresponding photon energy. Equation 2.10 also shows that the one-photon transition
moment ⟨f | E⃗
 ⋅ r⃗ |i⟩ requires a change in parity as opposed to the two-photon moment
⟨f | E⃗
 ⋅ r⃗ |m⟩ ⟨m| E⃗
 ⋅ r⃗ |i⟩ which allows transitions between two states of same parity.[46][47] Due
to momentum conservation, the selection rules regarding the angular momentum quantum
number l are �l = ±1 for OPE and �l = 0, ±2 for TPE. Therefore, the absorption spectra of a
�uorophore for TPE can vary signi�cantly from the corresponding OPE absorption spectra.
In order to experimentally validate TPE, the relationship between the excitation power and
the detected �uorescence signal can be measured. For a continuous wave laser source usually
used in one-photon microscopy, the intensity distribution incident on the sample is linearly
dependent on the average excitation power. This di�ers from the intensity distribution in
TPE, where the total intensity achieved by a pulsed laser is a periodic function of time and
depends on the pulse width as well as the pulse repetition rate. The two-photon excitation
probability distribution W2p is given by

W2p(t) = �2I 20 (t) ∫
V
dVS2(r) (2.11)

where �2 is the two-photon absorption cross section, V is the excitation volume, S(r) is the
spatial distribution and I0 is the temporal intensity pro�le of the laser. Assuming a focal spot
of a di�raction-limited objective lens with uniform illumination, the spacial distribution S(r)
is described by the corresponding point-spread function:

S(r) = S (v, u) =
||||
2 ∫

1

0
J0 (v�) e−

i
2u�2� d�

||||

2
(2.12)
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Here, J0 is the zeroth-order Bessel function, v and u are the radial and axial optical coordinates:

v = 2�r sin �� (2.13)

u = 8�z sin
2 �/2

� (2.14)

Finally, the detected �uorescence signal F (t) depends on the concentration of the �uorophore
C(r, t), the �uorescence quantum e�ciency �2 and the overall collection e�ciency of the
microscope setup �:

F (t) = 12�2�W2pC(r, t) (2.15)

2.3. Raman Spectroscopy

Light interacts with matter in various ways. The term Raman scattering is associated with
the scattering of light by optical phonons in solids or molecular vibrations. Its theory is com-
prehensively described in literature.[48,49] In the following section, the process of spontaneous
Raman scattering are shortly explained in a two-photon picture and its physical background
is described dependencies on experimental parameters are derived such as the sample con-
centration, polarization and intensity of the incident laser light, which are important for this
master’s thesis.

2.3.1. Sca�ering processes

When a substance interacts with light, occasionally a small fraction of the light is scattered.
Two scenarios can be distinguished. In case no energy is exchanged between the molecule and
the electric �eld during this process, the interaction is termed elastic scattering. The scattered
light has the same frequency as the incident one and is called Rayleigh scattering (�gure 2.3a).
This phenomenon can be viewed as electrons being forced into oscillation by the incident light
�eld, but the “absorbed” energy is “emitted” from a virtual state immediately and radiated
again in all directions of space. Spontaneous Raman scattering is an inelastic scattering process
of electromagnetic radiation on molecules (�gure 2.3b-c). It was �rst theoretically predicted
in 1923[50] and experimentally observed �rst in 1928 by C.V. Raman.[51] During this process, a
portion of energy (equal to a vibration transition within the molecule) is transferred between
the incident light �eld and the molecule. If a portion of energy is retained for excitation of
molecular vibrations, the scattered light has lower frequency than the incident light, and is
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referred to as Stokes scattering (�gure 2.3b). If the molecule is already vibrationally excited,
light scattering can also be associated with a release of vibrational energy and an increase
in frequency of the scattered light is observed (2.3c). The spectral lines with the frequency
reduced by the oscillation frequency (Stokes lines) correspond to the rule of Stokes, those
with the higher frequency do not (anti-Stokes lines). For both cases, spontaneous Raman
scattering is a linear optical process. Its molecular polarisation P depends only linear on the
electric �eld of the incident light. Hence, the detected Raman signal scales linearly with the
intensity of the excitation laser. The scattered signal is emitted incoherently in all directions
of space. Since one is interested in the oscillation frequencies of the molecules, wavenumbers
- shown in a Raman spectrum - are always related to that of the incident excitation light.
The di�erence between the actual wavenumber of the Raman scattered light and that of the
excitation light is depicted as Raman shift in cm−1.

Virtual
states

Rayleigh scattering Stokes Raman scattering Anti-Stokes Raman scattering

v = 1

En
er

gy

E0

hνp

E1

v = 0

a) b) c)

hνp

hνvib

hνp hνs hνp hνas

Figure 2.3. | Scattering processes: Rayleigh scattering, i.e. elastic scattering, is a passive process. No
energy is transferred. b,c) Raman scattering, i.e. inelastic scattering, is an active process.
Energy is transferred between molecule and light. Molecular transitions are represented
by colored vertical arrows.
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2.3.2. Classical description of Raman sca�ering

The classical theory of the Raman e�ect is based upon the polarizability of molecules. This
parameter re�ects how easy the electron cloud of a molecule can be distorted by an electric
�eld. If � is the polarizability and E is the �eld strength of an external electric �eld, the
polarization induced dipole moment � is described by:

� = �E (2.16)

Given that E describes the electric �eld component of the excitation light with the frequency
�p and e the unity vector in direction of the electric �eld, E becomes:

E = E0 cos (2��pt) ⋅ e (2.17)

Equation 2.16 can be modi�ed to

� = �E0 cos (2��pt) ⋅ e (2.18)

The polarizability � is modi�ed by vibration-induced displacements of atoms within the
molecule. These can be described via normal coordinates qi. For a molecule that vibrates
along the normal coordinate q and unity vector eq with frequency � , this displacement can be
written as:

q = Q cos 2 (��t) ⋅ eq (2.19)

Taking the change of molecular shape into account, the polarizability can be approximated
within a Taylor approximation along this normal coordinate. It becomes in �rst approximation:

� = �0 +
��
�q q + ... (2.20)

where �0 denotes the polarizability in the equilibrium state. Going from the microscopic to
macroscopic polarization, the macroscopic dipole P, i.e. the polarization of the medium is
linked via the polarizability � to the external electric �eld E:

P = N� = N�E (2.21)
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with N being the number molecules. The periodic change of the macroscopic polarisation P
along a speci�c vibration is therefore given as:

P = N ⋅ � = N (�0 +
��
�q Q cos (2��t)) ⋅ E0 cos (2��pt) ⋅ e (2.22)

= N ⋅ �0 ⋅ E0 cos (2��pt) +
N
2 E0

��
�q Q [cos (2� (�p − � )t) + cos (2� (�p + �)t)] ⋅ e (2.23)

Due to the oscillating dipole, the polarization P comprises three superimposed frequencies:
�p, �p − � and �p + � , which are present in the scattered light �eld. The �rst term refers to
the elastically scattered light, i.e. Rayleigh scattering, the second and third term to inelastic
Raman scattering process.

2.3.3. Experimental dependencies

The classical theory correctly predicts the existence of two electric �elds that are shifted to
lower (Stokes �eld) and higher (Anti-Stokes �eld) frequencies with respect to the incident
laser frequency. However, it cannot explain the di�erence in intensity between bands on
the Stokes or Anti-Stokes side. This discrepancy can only be explained in the framework of
quantum mechanics, which is beyond of this thesis. Shortly, the di�erence in intensity of both
scattering processes is a result a Boltzmann distributed occupancy of vibrational states. As
the population of the vibrationally excited state is smaller than within the vibrational ground
state, the Stokes scattering exhibits larger signals than Anti-Stokes scattering. Following
equation 2.22, it becomes further on obvious that the intensity of Rayleigh scattering scales
with the polarizability �0 while the intensity of Raman scattering scales with ��/�q. The
latter has an important consequence, namely, that Raman scattering occurs only if ��/�q is
not equal to 0, i.e. if the polarizability needs to change during the molecular oscillation. In the
formulas 2.16-2.22, � is treated as a scalar, i.e. as an isotropic polarizability averaged over all
directions. Taking into account that the electric �eld E is a vector �eld, same as the molecular
dipole �, and the polarisation P, the polarizability � is actually a rank two tensor:

� =
⎡
⎢
⎢
⎢
⎣

�xx �xy �xz
�yx �yy �yz
�zx �zy �zz

⎤
⎥
⎥
⎥
⎦

It depends on the polarization and direction of the electric �eld of incident light, as well as the
orientation of the detection, e.g. the magnitude �xy describes the response of the polarization
in x-direction for the electric �eld applied in y-direction.
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The polarizability is anisotropic, so is Raman scattering itself which is irradiated in all direc-
tions. For polarized light, the scattered light therefore has two polarization components, i.e.
parallel or perpendicular to the incident polarization. If x is the direction of incident light, y
the direction of scattered radiation and z the direction of polarization of the incident light,
the scattered light will have two orientations of polarization: parallel I∥ or perpendicular I⟂ to
the incident polarization (�gure 2.4). Thus, the detected signal is strongly dependent on the
polarization of the incident laser �eld, as well as the so-called polarization ratio �:

� = I∥
I⟂

(2.24)

Y

X

Z

eincident

escattered

Figure 2.4. | De�nition of Raman polarization: Upon the the interaction of a molecule with
incident light, the scattered light will have parallel or perpendicular orientations of
polarization.

To summarize, the signal strength of detected Raman resonances will strongly depend on
the change in polarizability which is dependent on molecular orientation, symmetry of a
vibrational mode and the employed laser polarization. Taken the above consideration together,
the overall measured Raman intensity can be derived to:[49]

I(�p) = Nz� (�p)I0 (2.25)

It depends on the number of molecules per volume N , i.e. the sample concentration c, the
sample thickness z, the intensity of the incident laser �eld I0 and the Raman cross section � ,
which is molecule-speci�c.
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The Raman cross section � is directly linked to the polarizability � of the molecule via

I(�p) =
1

12��0c3 ⋅ (2��p)
4 ⋅ Q2 ⋅ |||

��
�q
|||
2 ⋅ I (2.26)

In order to achieve strong signals in spontaneous Raman scattering, the excitation light
should have the highest possible frequency. However, it is generally not appropriate to use
higher-frequency light than blue light around 488 nm because many substances absorb in the
near UV region and a spontaneous Raman spectrum can only be measured if the excitation
light is not fully absorbed by the sample. Since many substances absorb in the near UV region,
the use of a UV light source would limit its applicability to this substance. For coloured
substances, this even applies to visible light. Another important factor, which can be very
disturbing in Raman spectroscopy, is the �uorescence emitted by the sample since it can
cover the entire range of Raman scattering. For little absorbing samples, �uorescence can be
suppressed if the wavelength of the laser light is su�ciently shifted to longer wavelengths. In
practice, excitation wavelengths of 532 nm to 1050 nm are employed. The relative intensity
ratio of the Rayleigh to Raman scattered light is larger than 106. Therefore, Rayleigh scattered
light must be highly attenuated before the emitted signal is detected, otherwise the much
weaker Raman scattering would be overshadowed by the generated stray light.

2.4. Confocal Microscopy

2.4.1. Resolution

In 1873, Ernst Abbe published his theory on the theoretical resolution limit of a microscope.[52]

It states that the lateral limit of microscopic resolution Δx is de�ned as follows:

Δx = �
2n sin(�) (2.27)

where � is the wavelength, n is the index of refraction between the lens and the sample, � is
the acceptance angle of the lens and the product n sin(�) represents the numerical aperture
(NA), which describes the capability of a lens to focus light. In 1835, George Biddell Airy
discovered that light cannot be focused on an in�nitely small point due to di�raction and a
�nite aperture size.[53] Instead, the result will always be a di�raction pattern, which consists
of a bright spot (Airy disk) surrounded by a series of concentric rings of decreasing intensity
(Airy pattern). Mathematically, the intensities are described by a point spread function (PSF)
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and can be calculated by the Kirchho�’s di�raction formula, but are usually approximated by
a Gaussian pro�le. Lord Rayleigh built on Airy’s work to further develop Abbe’s theory on
image generation. He compiled a new criterion for the achievable resolution of a lense based
microscope, nowadays termed Rayleigh criterion.[54] It states that two points can be resolved
if their �rst di�raction minima coincide with their maxima. The required distance between
the maxima of the two point sources is the resolution limit Δx :

Δx = 0.61�
n sin(�) (2.28)

Although the PSF is hourglass-shaped along the optical axis, the equation for the axial
resolution limit Δz can be deduced to:

Δz = 2�n
(n sin(�))2 (2.29)

Compared to the lateral resolution limit, the axial resolution limit is particularly di�cult to
achieve in standard wide-�eld microscopy. Since the whole sample is evenly illuminated
and all �uorophores are excited simultaneously, the detected signals include the emitted
�uorescence outside of the focal plane. This problem was solved by Marvin Minsky, who
�led in the patent for the principle of confocal microscopy in 1957.[55] In confocal microscopy,
the unfocused �uorescent light is blocked by a pinhole, which especially increases the axial
resolution and the contrast. The term confocal arises from the alignment of the pinhole, which
is optically conjugate to the focal plane of the objective lens, i.e. the pinhole and the focal
plane are simultaneously in focus. The pinhole diameter is usually expressed in so-called
Airy Units (AU). One Airy Unit is de�ned as the distance between the maximum of the Airy
disc and the �rst minimum of the Airy pattern multiplied by the total magni�cation of the
microscope. The axial resolution for pinhole diameters greater than 1 AU is described by the
following equation:

Δz =
√

(
0.88�0

n −
√
n2 − NA2)

2
+(

√2nPH
NA )

2
(2.30)

where PH is the diameter of the pinhole in micrometers, the �rst term is called the wave-
optical term and the second term is the geometric-optical term.[56] It follows from equation
2.30 that the resolution of the microscope can be enhanced only to some extent by decreasing
the pinhole size. For PH ≤ 1, the geometric-optical term already disappears and for PH ≤
0.25AU, the resolution approaches a �nite di�raction-limited value, which is then given by
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the following equation:
Δx = 0.64�0

n −
√
n2 − NA2

(2.31)

Since pinhole diameters below 1AU considerably reduce the detection yield and contrast, a
compromise between high resolution and detection yield must be made. The optimal pinhole
diameter is usually ∼ 0.85AU but can vary depending on the experimental conditions. For
wavelengths in the visible range between 488 nm and 640 nm, the theoretical resolution limit
in lateral and axial direction hence amounts to approximately 250 nm and 800 nm, respectively.

2.4.2. Confocal microscope setup

As opposed to wide-�eld microscopy, optical sections are produced by illuminating only a
small fraction of the specimen at a time. In combination with the improved axial resolution,
this method allows images to be collected noninvasively and therefore renders physical
sectioning of the sample unnecessary. A schematic of a simpli�ed confocal setup is shown in
�gure 2.5. First, the light emitted from a laser (green) is focused onto the �rst pinhole to form
a small point source. After being realigned by a collimator and re�ected by a dichroic mirror,
the excitation beam is focused onto the sample by the objective lens. The emitted �uorescent
light (red) passes through the dichroic mirror and is focused onto to the second pinhole by
the tube lens. Instead of the second pinhole, a multimode �ber is commonly used. In this
con�guration, exclusively �uorescent emission that originates from the confocal volume
is collected and subsequently measured by the detector. The high resolution and contrast
is accompanied by a reduced signal intensity since only the �uorescence of the confocal
volume is detected. Due to the high sensitivity of modern detectors such as photomultiplier
tubes (PMT), avalanche photodiodes (APD) or the newly developed hybrid photo detector
(HPD) the intensity decrease can be compensated. Since only one point of the specimen is
observed at any given instant, several techniques have been developed to obtain a complete
image, which are not illustrated in �gure 2.5. For a two-dimensional image, the laser beam
can be rapidly scanned across the sample in a raster pattern using scanning galvo mirrors
or an acousto-optic de�ector (AOD). Another method is to move the sample stage using a
piezoelectric scanner while the optics remain stationary. The stage scanning technique is
especially useful for acquiring 3D images since modern piezo scanners can be moved in all
three dimensions with sub-nanometer precision. However, piezo scanning is not suitable for
imaging of mobile or dynamic objects objects and hence samples such as living cells must be
�xed to the surface.
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Figure 2.5. | Schematic of a confocal microscope: The excitation beam (green), emitted by a laser,
passes the �rst confocal pinhole and is focused onto the sample. Out of focus �uorescence
light (red) is blocked by a pinhole. Only in focus �uorescence light emitted at the focal
point is transmitted and detected.

2.4.3. Fluorescence Correlation Spectroscopy

Fluorescence correlation spectroscopy (FCS) is commonly used to determine the concentration,
aggregation and di�usion coe�cient of �uorescent molecules bound to a system of interest and
to examine the molecular interactions between them.[57–59] However, since a de�ned excitation
volume is necessary to calculate these parameters, FCS is a helpful tool to characterize a
microscope setup by measuring dyes with known di�usion coe�cients. The theory and �rst
experimental realization was developed in the early seventies by measuring the di�usion
of ethidium bromide and its binding a�nity to DNA.[60–62] Figure 2.6 illustrates the general
procedure of FCS. Fluorescent molecules randomly di�use in and out of the excitation volume
which results in intensity �uctuations, i.e. deviations from the mean signal. As long as the
�uorescent molecule stays inside the observation volume these �uctuations contain a certain
amount of self-similarity which can be measured via the auto-correlation function (ACF). The
timescales of the �uctuating signals F (t) are determined by calculating the auto-correlation
of the signals as a function of lag time � .
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Figure 2.6. | Schematic of the FCS method: a) Fluorescent molecule di�uses through the focal
volume. b) The resulting intensity �uctuation is recorded. c) The auto-correlation function
is calculated as a function of a time shift � .

The �uctuations are given by:
ΔF (t) = F (t) − ⟨F (t)⟩ (2.32)

where ⟨F (t)⟩ is the time-averaged �uorescence signal. The ACF of the measured �uctuation,
normalized by average intensity squared, is given by:

G(� ) = ⟨ΔI (t) ⋅ ΔI (t + � )⟩
⟨I (t)⟩2 (2.33)

where � is the lag time, i.e the time di�erence between two data points. Kinetic properties
like the di�usion coe�cient can be extracted from the time dependence of the ACF since G(� )
describes the probability distribution of detecting a photon after a lag time � . The amplitude of
G(� ) is proportional to the size of the �uctuations and hence it is related to the concentration
and brightness of the �uorescent molecule. For short time lags, the intensity �uctuations
caused by �uorescent molecules staying inside the focal volume show high self-similarity. The
resulting positive correlation value decays with increasing time lag because the �uctuations
ΔF (t) are averaged out. Therefore, the di�usion coe�cient and the focal volume determine
the time-dependent decay of the correlation function. The concentration can be calculated by

⟨N ⟩ = ⟨C⟩Vef f (2.34)

where Vef f is the e�ective observation volume and ⟨N⟩ is the average number of �uorescent
molecules within the focal spot, which is inversely proportional to the correlation amplitude
G(0). This relationship comes from the distribution of molecules being described by a Poisson
distribution and hence the variance is proportional to the square root of the mean.
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Consequently, ΔC is proportional to
√
N and the numerator in equation 2.33 contains a factor

N while the denominator contains a factorN 2 leading toG(0) = 1/N . The e�ective observation
volume Vef f depends on the probability of generating �uorescence photons in the vicinity of
the focal volume described by a point-spread function W (r) and is usually approximated by a
three-dimensional Gaussian function. However, the real excitation volume is larger because
it has no clearly de�ned radius. To account for the uniformity of the �uorescence signal and
the e�ective steepness of the volume boundaries the so-called 
 -factor must be considered. It
is de�ned as


 = ∫ (W (r)/W (0))2 dr
∫ (W (r)/W (0)) dr (2.35)

where W (r)/W (0) is the e�ective observation volume Vef f . In case of one-photon excitation,
the ACF for the free di�usion in a three-dimensional Gaussian volume can be expressed as:[63]

G(� ) = 

⟨N ⟩ ⋅(

1
1 + 4D� /!2

r )
⋅
√

1
1 + 4D� /!2

z
(2.36)

For two-photon excitation, the ACF can be expressed as:[64]

G(� ) = 

⟨N ⟩ ⋅(

1
1 + 8D� /!2

r )
⋅
√

1
1 + 8D� /!2

z
(2.37)

The radii of the Gaussian volume for the lateral and axial dimensions are denoted as !r and
!z , respectively. They are de�ned as the distance from the center at which the intensity has
decayed to 1/e2 of the maximum. The relationship between the di�usion coe�cient D and
the characteristic residence time �D (see �gure 2.6) is given by:

D = !2
r

4�D
(2.38)

Regarding the performance of �uorescent probes or the quality of a confocal microscope,
the molecular brightness � can serve as read-out parameter.. It is de�ned as the ratio of
the average �uorescence count-rate and the average number of �uorophores within the
observation volume:

� = ⟨F (t)⟩
⟨N ⟩ (2.39)

Observable time scales in FCS range from nano- to milliseconds depending on the experimental
condition. The lower time limit is determined by detector deadtime (2 ns–30 ns), detector
afterpulsing (100 ns to 5 µs) and the number of detected photons (10 ns–100 ns).

20



2. THEORY

The upper time limit is given by the time a �uorophore di�uses through the excitation volume
which can be in range of 10 µs to 1ms. However, this limit can be extended experimentally
either by increasing the observation volumen or by increasing the di�usion time within a
viscous environment.

2.5. Data Analysis

2.5.1. Linear Decomposition

Linear decomposition via the least squares method is a comprehensive term in linear algebra
which represents the factorization of a matrix into a product of matrices. The main advantage
of linear decomposition is its simplicity and high e�ciency of solving linear equations. In
spectral analysis and many other research �elds, linear decomposition is a standard approach
for data �tting and various modi�ed approaches exist for handling large data sets, e.g. LU,
LDL, Cholesky and QR decomposition.[65–69] A spectrum B of a multi-compound sample can
be viewed as a set of linear equations in an overdetermined system:

∑
k=1

xi,kAi,k = Bi (2.40)

where xi,k is the contribution of compound k at data point i. This can be rewritten to matrix
form:

Ax = B (2.41)

Here, A is a column vector of each component. The least squares problem is to �nd x that
minimizes ‖Ax − B‖2. The minimizing vector x is called least squares solution of Ax = B and
can be found by multiplying the equation with the transpose of matrix A:

ATAx = ATB (2.42)

Solving for x yields:
x = (ATA)

−1ATB (2.43)

This linear system is called the normal equations.
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2.5.2. Principle Component Analysis (PCA)

Principle component analysis (PCA) is a mathematical technique developed in 1901 by Karl
Pearson.[70] Today, PCA has a wide range of application in multivariate statistics and any
research �eld which requires the analysis of large data sets.[27,28,71–79] In particular, PCA is
used for dimensionality reduction and extraction of the most important, possibly correlated
patterns in a multivariate data set by expressing these patterns as a set of a few uncorrelated
variables. The newly de�ned variables are called principal components and are projected
onto principal axes describing the direction along which the variation in the data is maximal.
Depending on the �eld of application, various algorithms can be used to transform the data and
�nd the principal axes. The basic and obvious approach is to use the eigenvalue decomposition
of the covariance matrix of the data set. However, singular value decomposition (SVD) is
often used because it can be directly performed on non-symmetric, non-square matrices. The
�rst step is to mean center a given data matrix Z of n × p size, where n is the number of
observations and p is the number of spectra. By subtracting the column average from each
element, an intercept equal to zero is obtained for the principal component axes:

z̄p =
1
n

n
∑
i=1
znp (2.44)

where z̄p denotes the p-th column of the mean centered data matrix Z̄. In addition, the data
matrix is normalized to remove the e�ect of the number of rows on the eigenvalues:

X = Z√n − 1 (2.45)

By performing SVD of X, the following decomposition is obtained:

X = U�VT (2.46)

where U is an orthogonal n×n matrix containing the left singular vectors, i.e. the eigenvectors
of XXT , and V is an orthogonal p × p matrix containing the right singular vectors, i.e. the
eigenvectors of XTX.
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� is a diagonal n × p matrix of singular values �i and has the form

� =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1
�2 0

⋱
�i

0
0 ⋱

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with �1 ≥ �2 ≥ … ≥ �i . The spanned null space depends on the rank r of X which is equal to
the rank of Σ and is de�ned as the maximum number of linearly independent column or row
vectors in the matrix. The singular values �i of X can be calculated by solving:

det (X − � I) = 0 (2.47)

where I is the identity matrix. Subsequently, the i-th eigenvector ei can be found via:

Xei = �iei (2.48)

The close relationship between SVD and the variance of the data set can be established by
decomposing the corresponding covariance matrix. Using the de�nition of the mean centered
data X, the p × p covariance matrix C can be calculated as:

C = ZTZ = XTX√n − 1 (2.49)

Since C is a symmetric square matrix, eigenvalue decomposition can be performed:

C = VSVT (2.50)

where V is a p × p matrix of eigenvectors and S is a n × p diagonal matrix of eigenvalues �i .
Combining the SVD of X (equation 2.46) and the de�nition of the covariance matrix (equation
2.49) yields:

C = VSU
TUSVT

n − 1 = V �2
n − 1V

T (2.51)
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Hence, the variance of the data set given by the eigenvalues �i of the covariance matrix C can
be expressed by the singular values �i of the mean centered data X:

�i =
� 2i
n − 1 (2.52)

Furthermore, the direction of maximum variance (principle axes) are described by the right
singular vectors V. The original data projected on the principle axes (principle components)
are obtained via:

XV = U�VTV = U� (2.53)

Here, the p-th principle component is the p-th column of U�. The respective coordinates of
the n-th transformed observation in the original data are given by the n-th row of U�. The
original data Z of the same n × p size but of lower rank can now be reconstructed by choosing
r columns of U, V and the corresponding r × r part of S:

Xr = UrSrVT
r (2.54)

Zr = Xr + � (2.55)

where � is the mean value subtracted from each column in the �rst step of the analysis
(equation 2.44). Commonly, the �rst r eigenvectors are selected which cumulatively explain
at least ∼ 90% of the total variance in the data set, thus ensuring e�ective denoising while
retaining the most important information. However, the amount of variance accounted for by
the �rst few PCs is lower in Raman imaging due to the larger data sets and the noise, which
can increase the intraspectrum variability. Moreover, the chosen rank in approximation can
vary depending on the variance of interest explained by the corresponding eigenvector, i.e.
principal axes.
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In this work, the assembly of a complex setup is presented comprising a �uorescence one-
and two-photon microscope with the prospect of performing stimulated Raman spectroscopy
in the near future. The main subject of interest is investigating the transport, metabolism and
storage of sugars in cells. This chapter describes the various methods which were employed
to benchmark the home-built microscope, study di�erent sugars by Raman spectroscopy,
performing live cell Raman measurements and analyze the obtained data.

3.1. Description of the home-built setup

The assembled setup is based on a modi�ed Nikon Eclipse TE300 inverted microscope body
equipped with an LH-M100CB-1 mercury lamp housing with TE-PS100 power supply, an
Ho�man Modulation Contrast G3 Variable Condenser and a 4-way optical path control for a
total of three ports. The side port lens of the microscope body was removed to gain more
customizable control over the detection path. For coarse sample pos itioning and raster
scanning a 3 axis piezo nanopositioner hybrid system (BIO3.200 Piezoconcept) was integrated
in the microscope capable of 200 µm scan ranges in all three dimensions. The red and green
excitation light is provided by a continuous-wave 633 nm helium-neon laser generating
a 500:1 linearly polarized output of 17mW–25mW and a continuous-wave 532 nm diode-
pumped laser (Cobolt Samba™100 04-01 Series) generating a 100:1 linearly poplarized output
of up to 100mW, respectively. Two photon excitation is accomplished by a prototype �ber
coupled laser (FemtoFiber dichro bioMP, Toptica Photonics) providing two separately tunable
wavelengths of 780 nm and 1050 nm femtosecond pulses with a 80MHz repetition rate and
an avarage power output of up to 300mW (780 nm) and 1.5W (1050 nm). Regarding the one-
photon excitation path, the red and green laser are �rst separately spatially �ltered to obtain a
gaussian beam pro�le and expanded to a beam diameter of at least 8mm to ensure over�lling
of the objective back aparture. The green laser is focused by a doublet lens ( f = 15mm, AC064-
015-A, Thorlabs) onto a 15 µm pinhole (P15H, Thorlabs) and collimated by an achromatic
doublet lens ( f = 200mmAC254-200-A, Thorlabs). The red laser is guided through a telescope
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system composed of a focusing doublet lens ( f = 15mm, AC064-015-A), a 20 µm pinhole
(P20H, Thorlabs) and a doublet lens ( f = 250mm, AC254-250-A, Thorlabs). Both red and green
beam paths are combined by a dual line dichroic mirror (zt532/640rpc, AHF Analysentechnik).
Since the radiation coming from the IR laser is highly divergent after the laser output, the
780 nm and 1050 nm excitation are split by a shortpass dichroic mirror (DMSP805, Thorlabs)
and guided through two separate telescope systems. After splitting the two wavelengths,
both laser beams were broadened and collimated by ( f = 100mm, LA1509-B, Thorlabs) and
( f = 150mm, LA1433-B, Thorlabs) singlet lenses. However, due to the oval shape of the
1050 nm laser beam, a 75 µm pinhole (P100H, Thorlabs) was placed into the focal spot of the
focusing lens. Both beam paths were recombined by a shortpass dichroic beamsplitter (HC
BS 930 SP, AHF Analysentechnik) and their height above the laser table is adjusted via a
periscope, to the height of the one-photon beam path and backport of the microscope body.
Finally, the multiphoton infrared and the one-photon beam path were combined by a shortpass
dichroic mirror (HC BS 749 SP, AHF Analysentechnik). All laser beams subsequently enter
the microscope’s back port, are re�ected by a polychroic mirror (zt 532/640/NIR rpc, AHF
Analysentechnik) and focused into the sample by a 60x 1.20 NA water immersion objective (CFI
Plan Apo VC 60XWI). Photons are collected by the same objective, split from the excitation
light by the same polychroic mirror and re�ected to the side port detection path. First, the
signal is �ltered by a 750 nm shortpass (FES0750, Thorlabs) and focused onto a 50 µm pinhole
(P50H, Thorlabs) by an achromatic doublet lens ( f = 250mm, AC254-250-A-ML, Thorlabs).
After being collimated by an achromatic doublet lens ( f = 50mm, AC254-050-A-ML, Thorlabs),
photons are split by a shortpass dichroic mirror (BS 647 SP, AHF Analysentechnik) and focused
by achromatic doublet lenses ( f = 50mm, AC254-050-A-ML, Thorlabs) onto the detectorchips
of the two single photon counting avalanche photodiodes (green channel: COUNT®BLUE ,
Laser Components; red channel: COUNT®, Laser Components). For one-photon excitation,
photons were additionally �ltered by emission �lters (green channel: HQ580/75, red channel:
HQ680/50, AHF Analysentechnik). The APD output is send to two time correlated single
photon counting cards (SPC-140 and SPC-150, Becker & Hickl). The synchronization of these
TCSPC cards and the lasers is performed by the driver module of the pulsed Toptica laser at the
frequency of ∼80MHz. The long focal length of the �rst signal collecting lens of the detection
unit has the advantage of granting enough space for a re�ecting mirror in a dual-position
slider (ELL6K and ELLA1, Thorlabs) allowing for the implementation of a bright�eld imaging
path.
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Figure 3.1. | Microscope setup schematic: M: mirror, L: lens, PH: pinhole, DM: dichroic/polychroic
mirror, F: �lter, APD: avalanche photo diode. The Raman section of the setup is gray
scaled.
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By sliding the re�ecting mirror into the detection path, the signal is re�ected and focused by
an achromatic doublet lens ( f = 125mm, AC254-125-A, Thorlabs) onto an EMCCD camera
(DU860D-CS0-BV, Andor), which is operated via Andor Solis software (version 4.19.3, Andor).
To provide a broader overview of the sample and select an appropriate imaging region, a
CMOS camera (DCC1545M, Thorlabs) was mounted in addition on top of the binocular
port (not shown in �gure 3.1). Within the one-photon excitation path, broadband dielectric
mirrors (BB1-E02, Thorlabs) mounted in kinematic mirror mounts (KM100, Thorlabs) were
used. Throughout the two-photon beam path, low group delay dispersion (GDD) mirrors
optimized for femtosecond pulses of the corresponding wavelength are used (780 nm: UM10-
45A, 1050 nm: UM10-45B, Thorlabs). A schematic illustration of the complete microscope
setup is shown in �gure 3.1. The currently developed beam path dedicated for coherent Raman
imaging is depicted in grey. The complete overview for excitation and detection capabilities
of the setup is shown in �gure 3.2. Due to a defect beam path of the 1050 nm excitation within
the laser, a full demonstration of it capability for dual-color two-photon excitation could not
be achieved within the scope of the master thesis.

Figure 3.2. | Excitation and detection overview: Laser excitation options are indicated as vertical
bars. Filters and dichroic mirrors are represented as colored solid lines. The detection
range using the standard �lter set used in this thesis is displayed in semi-transparent
colors (green, red).
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3.2. Characterization of the home-built microscope setup

Confocal volumes of one- and two-photon excitation were determined using �uorescence
correlation spectroscopy (FCS). In all measurements, the �uorescence emitted by dyes of
known concentrations and di�usion coe�cients was detected for 60 s. The recorded FCS
values were �tted with the appropriate �t functions with respect to one- and two-photon
excitation (see section 2.4.3, equation 2.36 and 2.37), approximating the focal volume as
a 3D-Gaussian. According to deviations of the calculated autocorrelation function (ACF),
the e�ects of di�erent excitation powers and the detection pinhole was examined. For the
recording of scan images, �uorescence measurements and FCS analysis, the software PAM
(pulsed interleaved excitation analysis with MATLAB) was used.[80]

3.3. Raman Setups

Depending on the experimental question, di�erent setups based on spontaneous Raman
scattering were used for data acquisition. Raman spectra of solids and substances in solution
were measured in collaboration with Florian Zischka (Group of Prof. A. Kornath, LMU) on
two di�erent setups. Confocal Raman imaging of live cells was performed in collaboration
with David Bauer (Group of Prof. Dr. C. Haisch, TUM München).

3.3.1. Raman spectroscopy in liquid phase

To characterize di�erent solutions and liquids by Raman spectroscopy, a custom build setup
was employed. A 532 nm diode pumped, solid state laser (Cobolt Samba™05-01 Series) served
as an excitation source. Raman scattered light was detected via a triple Raman spectrometer
(T64000, Horiba Scienti�c) equipped with three gratings in an ultra-high resolution triple
additive con�guration and capable of a spectral resolution of up to 0.1 cm−1. To record spectra,
the laser source was operating at 1.8W output and focused onto the sample loaded in a NMR
tube from two sides by a lens and parabolic optics. The Raman scatttered light was collected
in 90° angle and guided into the triple Raman spectrometer. For Raman spectra of sugars, the
total integration time was set to 8min and was recorded from 800 to 4000 cm−1 by tuning
the detection wavelength from ∼532 nm to 675 nm. Raman spectra of solvents were recorded
using the same spectral range but a lower integration time of 40 s. A simpli�ed scheme of the
setup is shown in �gure 3.3.
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Figure 3.3. | Raman Setup used for liquids: Green excitation light is focused into the sample
solution and re�ected by a parabolic mirror. Detection is performed in a 90° angle via a
triple Raman spectrometer.

The following substaences were characterized by Raman spectroscopy. List of sugars measured
at 1M concentration in water:

• D-Glucose, D-Mannose, D-Galactose

• Methyl β-D-glucopyranoside, Methyl β-D-mannopyranoside,
Methyl β-D-glucopyranoside

• N-Acetyl-D-glucosamine (GlcNAc), N-Acetyl-D-mannosamine (ManNAc),
N-Acetyl-D-galactosamine (GalNAc)

• 2-Azido-2-deoxy-D-glucose (GlcNAz), deuterated Methyl α-D-glucopyranoside

List of measured pure solvents:

• H2O (55.5M), D2O (55.3M)

• Ethanol (17.1M), Ethylengylcol(17.9M), Chloroform (12.5M), Toluene (9.4M)

• Propyn-1-ol (16.9M), Butyn-1-ol (12.8M)

Methyl α-D-glucopyranoside was synthesized in collaboration with Adrian Müller-Deku,
M.Sc (Group of Thorn-Seshold, PhD) via a Ru/C-catalyzed H–D exchange reaction of methyl
α-D-glucoside.[81,82] All other substances were purchased from Sigma Aldrich.
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3.3.2. Raman spectroscopy in solid phase

Raman spectra of solids or substances with electronic resonances in the spectral range below
600 nm were acquired using a commercially available Fourier Transform Raman spectrometer
(MultiRam, Bruker) equipped with a Nd:YAG-Laser (1064 nm) operating at 1000mW. The
samples were loaded in a NMR tube. The total integration time was set to 10min for a range
of 50 cm−1–3600 cm−1 and the spectral resolution of the system amounts to 1 cm−1. Fourier
Transform Raman spectrometers do not exhibit dispersive gratings like conventional Raman
spectrometers. Instead, a Michelson interferometer is used where the Raman scattered light
is split into two beams by a beam splitter.[83] By re�ecting one beam o� a �xed mirror and the
other beam o� a movable mirror, di�erent travel lengths and hence time delays are introduced.
The temporal coherence of the scattered light can be related to the position of the mirror,
thereby transforming the time domain into the frequency domain. The resulting interference
patterns are related to the position of the movable mirror and by using a Fourier transform on
the interferogram the Raman spectrum is reconstructed and served to measure the following
substances:

• D-Glucose, D-Mannose, D-Galactose

• Methyl β-D-glucopyranoside, Methyl β-D-mannopyranoside,
Methyl β-D-glucopyranoside

• N-Acetyl-D-glucosamine (GlcNAc), N-Acetyl-D-mannosamine (ManNAc),
N-Acetyl-D-galactosamine (GalNAc)

• 2-Azido-2-deoxy-D-glucose (N3-Glc), deuterated Methyl α-D-glucopyranoside

3.3.3. Confocal Raman imaging of living cells

Confocal Raman imaging was carried out on a commercially available microscope (WITec
alpha 300R) using a 633 nm Helium Neon laser (Newport R-14309, 35mW) as an excitation
source and a 63x 1.20 NA water immersion objective (Zeiss W Plan-Apochromat). HeLa
cells incubated with normal glucose, N-azidoacetylmannosamine and deuterated Methyl
α-D-glucopyranoside were examined. The sample was illuminated from below and stitched
wide�eld images for a broad overview of 4×4mm were used to obtain a broad overview.
Cells were then selected and the scan area was �nely adjusted in a rectangle form. For
confocal Raman scanning the excitation was realized from above the sample with backwards
detection and piezo scanning of the objective. Since a full spectrum for each pixel is measured
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a hyperspectral data cube is obtained for every confocal Raman scan. This method is termed
hyperspectral imaging and is illustrated in �gure 3.4. The excitation power of the red laser
(633 nm) was set to 20mW using an integration time of 0.1 s and a step size of 1 µm for each
pixel. For each spectrum an array of 1600 elements (data points) was obtained at a detection
region of 643 cm−1–3113 cm−1 which corresponds to a spectral resolution of ∼1.54 cm−1. The
complete dataset was exported as a MATLAB �le using the WITec Project FIVE software.
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Figure 3.4. | Hyperspectral imaging: a) The hyperspectral image cube is built up during the confocal
scan of the sample. b) The hyperspectral data dube is a three-dimensional image comprised
of spatial data (x and y coordinates) and spectral data (created by the di�raction grating,
which disperses the wavelengths of light). Figure adopted from reference.[84]

3.4. Data Analysis and Simulation

The analysis of hyperspectral Raman datasets as well as the simulation of Raman spectra
was executed using the program MATLAB R2017b (MathWorks®). Baseline correction of
all Raman spectra was performed via polynomial �tting using the asymmetric truncated
quadratic function.[85] The complete source codes developed and used for the simulations and
analysis are listed in the appendix.
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3.4.1. Estimation of the detection limit

The estimation of the detection limit of a Raman labeled sugar is based on experimental,
spontaneous Raman spectra, which were obtained with the Triple Raman spectrometer (see
subsection 3.3.1). For the analysis of univariate data, e.g. spectra that di�er by a single, clearly
separated peak, as well as multivariate and multi-compound spectra, linear decomposition and
principle component analysis via singular value decomposition were performed (see section
2.5). Simulated spectra were constructed by linear combination of recorded spontaneous
Raman spectra and superimposed Gaussian white noise.[86] Normal linear decomposition and
PCA were examined with respect to their accuracy of the reconstruction of a speci�c broad
band substrate spectrum and single peak. For estimating the feasiblity of the project and
determining the limits of both analysis methods, the concentration of the substrate and the
signal-to-noise ratio (SNR) were considered. The concentration sensitivity was investigated
in simulations by scaling the recorded spectrum of the sugar in amplitude in presence of
di�erent amounts of experimental noise which was created by adding Gaussian noise to each
data point. The substrate of interest was chosen to be the Raman labeled sugar azidoglucose
and the azide stretch vibration at ∼2120 cm−1 was used for single peak spectra. The simulated
multi-compound spectrum was composed of nine other recorded substances beside azidoglu-
cose, namely glucose, galactose, mannose, methylglucose, methylgalactose, methylmannose,
ethanol and ethylenglycol. All of the prede�ned noise levels and concentrations of the spectra
were combined in nested loop iterations and the accuracy per iteration was determined by
the ratio of the calculated concentration and the input concentration. For each combination
of noise and concentration the corresponding analysis was performed 40 times to obtain the
average accuracy and standard deviation. In each iteration, the SNR was determined by �rst
mean-centering the analyzed spectrum and the corresponding noise. Then, the SNR was
calculated via the variance ratio of the data according to:

SNR =
� 2spectrum

� 2noise
(3.1)

To solve the linear equations in the linear decomposition analysis, the original real spectra
were used. Regarding the PCA technique, the two most important parameters in�uencing
the quality of the analysis are the total number of spectra in the data set and the rank
approximation used for the recreation of each spectrum. The calculation time of PCA increases
for larger data sets and had to be perfomed several thousand times. Hence the total amount
of spectra had to be limited to 2000, which is large enough for e�ective denoising of the data
and still well below the typical size of data sets obtained by confocal raman scans.
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The rank selected for the recreation usually depends on the variance one is interested in. For
example, a rank 1 approximation can fairly accurately describe the variance in the data but
the desired information may be in component 2 or 3 and would get lost. In case of quantifying
one substance in a constant background signal, the variance of interest is mainly described
by one component which can di�er depending on the background signal and measurement
noise.

3.4.2. Live cell data

Depending on the size of the scanned area and stepsize, hyperspectral data cubes obtained
from live cell raman scans consisted of up to 12000 spectra. The MATLAB script used for the
analysis of these datasets can be found in the appendix. PCA was directly performed on the
raw data to determine and correct for outliers, e.g. spectra containing large spikes caused by
cosmic rays. The hyperspectral data cube was �rst reshaped into a 2D matrix Z of n × p size
and mean centered according to the equations described in section 2.5.2:
Mean centering:

xj =
1
n

n
∑
i=1
zij (3.2)

Standardization by rows:
X = Z√n − 1 (3.3)

Singular value decomposition was then performed via:

X = U�VT (3.4)

To determine and correct for outlier spectra, PCA biplots of the decomposed matrices were
created. A biplot not only contains the common scatter plot of the principle components
but also the corresponding loadings which can be achieved by standardization. Standardized
loadings are given by columns of VS/√p − 1 and standardized principle components are given
by columns of

√n − 1U. Loadings are useful for the visualization of the analyzed data set and
contain valuable information as they are the weights by which each standardized original
variable should be multiplied to get the component score. Therefore, loadings also represent
the eigenvectors scaled by the covariances observed between the spectra. Outliers can be
easily identi�ed since not only the direction but also the magnitude of the eigenvectors can
di�er signi�cantly from the main cluster of spectra. Furthermore, the vertical sums of squares
of the loading matrix are the eigenvalues, i.e. the components’ variances. The horizontal
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sums of squares are the fraction of variance in the data set being explained by the components
which can be used for an appropriate reconstruction of the data. After baseline correction
using the asymmetric truncated quadratic function, Raman maps were created via univariate
data analysis. Mean spectra were obtained by �rst choosing a standard deviation threshold
for the integrated intensity of a speci�ed spectral region. To adjust this threshold, individual
pixels ful�lling the criterion were immediately compared to the Raman intensity map of the
cell. The standard deviation threshold was determined iteratively until the selected pixels
coincided with the Raman map. The two clusters of spectra were averaged separately in order
to get a mean cell spectrum, a residual spectrum of the medium and the di�erence spectrum.

3.5. Cell Culture

Sugar uptake in living cells was studied for HeLa cells (epitheloid cervix carcinoma). These
were grown in F75 �asks (surface area: 25 cm2, working volume: 5mL). The complete growth
medium consisted of Dulbecco’s Modi�ed Eagle’s Medium (DMEM) containing 4.5mg/L
glucose, non-essential amino acids (NEAA), 10% fetal bovine serum (FBS), 2mM L-glutamine,
1mM sodium pyruvate and Penicillin-Streptomycin (1/100). All supplements for the treatment
of HeLa cells were purchased from Thermo Fisher Scienti�c.

Resuscitation of frozen cells

Frozen cells were thawed in a 37 ◦C bath, transferred to a F75 �ask already containing 4mL
of the complete growth medium. For growth and maintenance, the cells were placed in an
incubator at 37 ◦Cwith a 5% carbon dioxide content of the atmosphere to realize slightly acidic
conditions. The day after thawing, most of the cells stuck to the surface of the �ask and the
growth medium was aspirated. To remove any dead cells and residues of the freezing medium,
the �ask was washed using 5mL Phosphate-bu�ered saline (PBS, pH 7.4, without Calcium,
Magnesium and Phenol Red) and the remaining living cells were provided with new growth
medium. At ∼ 80% con�uency, passaging was conducted by �rst washing with 5mL PBS,
adding 1mL Gibco®Trypsin-EDTA and incubating for 2min. Trypsin was deactivated by
adding 4mL cell media while carefully pipetting the whole solution to avoid cell agglomeration.
Afterwards, the cells were split at a 1/5 ratio by transferring 1mL of the homogeneous cell
solution to a new F75 �ask. The passaging procedure was repeated twice a week.
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Storage of cells

For storage, the residual cell solution was pipetted into a falcon tube and centrifuged at
1200 rpm for 4min at room temperature. After aspiration of the supernatant, the freezing
medium was added to the isolated cell pellet. The freezing medium consisted of the regular
complete growth medium and 5% dimethyl sulfoxide (DMSO) used as a cryoprotectant. The
cell solution was made homogeneous by pipetting and was stored at −80 ◦C in 1mL Eppendorf
Tubes®.

Confocal Raman imaging of living cells

For monitoring sugar uptake in living cells by Raman scattering, HeLa cells were grown and
seeded over night in media containing di�erent types of sugars. For �rst proof-of-concept ex-
periments, cells were either provided with usual, high glucose DMEM (25mM) or low glucose
DMEM (5mM) with additional Raman-tagged sugar (20mM, N-azidoacetylmannosamine and
deuterated Methyl α-D-glucopyranoside) in a ratio of 1:4. Cells were seeded on poly-lysine
coated 35mm wide glass bottom dishes (MatTek Corp. Ashland, USA, P35GC-0-14-C) and
characterized by an inverted Raman scanning microscope (WITec GmbH, see subsection
3.3.3). The dishes were washed trice with PBS and the bu�er was replaced against PBS
directly before Raman imaging. For confocal scan imaging performed on the home-built
setup, cells were �xed on Lab-Tek®2 chamber slides. The �rst step in the �xing procedure
was aspiration of the cell medium and washing with 0.5mL PBS. Then, 0.5mL of a freshly
prepared 4% paraformaldehyde (PFA) solution was added to each chamber. Since PFA is highly
photounstable, the chambers were covered with aluminium foil.

After 15min incubation time, PFA was removed and the �xed cells were washed twice with
0.5mL PBS. Depending on the experiment, WGA488 stain was added For live cell imaging,
HeLa cells were provided over night with either usual high glucose DMEM or modi�ed DMEM
containing low glucose DMEM and the raman labeled sugar (N-azidoacetylmannosamine and
deuterated Methyl α-D-glucopyranoside) in a ratio of 1:4.

Since the excitation and detection of the confocal Raman setup used for live cell imaging
was realized from above the sample, Lab-Tek®2 chamber slides were inadequate and HeLa
cells had to be incubated on cover slides.
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This chapter is partitioned into two main sections. In the �rst section, the home-built mul-
timodal confocal microscope capable of simultaneous one- and two-photon excitation is
characterized via �uorescence correlation spectroscopy (FCS) and imaging of �xed cells.
Results with respect to Raman spectroscopy on sugars, simulations and Confocal Raman
imaging for monitoring sugar uptake in live cells are discussed in the second section.

4.1. Characterization of the combined one- and
two-photon microscope

4.1.1. Characterization via FCS

One-photon excitation

As described in section 3.2, FCS is a useful tool to determine the focal volume and examine
the in�uence of various optical elements. After completion of the setup and the �rst suc-
cessful FCS �t curves, the optimal position of the detection pinhole was determined. Due
to chromatic aberrations, the refractive index of a lens depends on the wavelength of the
emitted �uorescence. Hence, the detection pinhole can not be optimally placed in the focal
point of the �rst focusing lens for all wavelengths and a compromise must be made. The
long focal length of the �rst detection lens ( f = 250mm) has the advantage of minimizing
chromatic aberrations but the disadvantage of being more sensitive to the alignment. First,
the optimal pinhole position for each channel was determined separately by estimating the
maximum molecular brightness while moving the pinhole, mounted on a translation stage,
along the optical axis. Since these positions represented the minimum and maximum chro-
matic shift between green and red �uorescence, the mean value was de�ned to be the the
ideal pinhole position and a lookup table for two color measurements. A FCS measurement
with 60 s runtime and excitation powers of 2 µW (532 nm) and 9 µW (633 nm) was performed
on both channels for every pinhole position. Higher excitation powers would result in a
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higher signal-to-noise ratio but would also signi�cantly increase the triplet state population
of the excited �uorophores which complicates the subsequent data �tting. For both channels
a solution of 10 nM Atto532 (green emission, D = 373 µm2 s−1, Atto-tec Germany) and 10 nM
Atto655 (red emission, D = 393 µm2 s−1, Atto-tec Germany) was used. The FCS data was �tted
using a �xed di�usion coe�cient of the respective dye. As expected, the FCS �t curves (�gure
4.1) and the corresponding values (table 4.1) show a less de�ned focal volume if the pinhole
position is optimized for the opposite channel, especially in z-direction. The trade-o� position
for multicolor measurements causes a small and tolerable deviation from the optimum for
both channels.

Atto532_Green_optimized
Atto532_Red_optimized
Atto532_Compromise

Atto532_Green_optimized
Atto532_Red_optimized
Atto532_Compromise

Atto655_Green_optimized
Atto655_Red_optimized
Atto655_Compromise

Atto655_Green_optimized
Atto655_Red_optimized
Atto655_Compromise

a)

c)

b)

d)

Figure 4.1. | In�uence of pinhole position on FCS curves: (a),(b) Unnormalized and normalized
FCS curves recorded for the green channel. (c),(d) Unnormalized and normalized FCS
curves recorded for the red channel. Alignment of the pinhole was optimized for the
green channel (green), the red channel (red) and both channels (blue).
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Table 4.1. | FCS �t values for di�erent pinhole positions.
FCS curve Counts [kHZ] � [kHz] N wr [µm] wz [µm] � 2
Atto532_Green_opt. 28.6852 32.8352 0.901 0.2503 1.4933 1.05
Atto532_Red_opt. 24.2575 23.8053 1.019 0.2614 1.6910 1.04
Atto532_compromise 30.8068 31.1039 0.990 0.2533 1.6163 1.41
Atto655_Green_opt. 11.4023 8.3901 1.359 0.2801 1.4127 0.82
Atto655_Red_opt. 22.2005 22.1685 1.001 0.2509 0.9477 0.90
Atto655_compromise 21.1534 17.7630 1.191 0.2499 1.2619 1.11

To further con�rm the function of the complete system �uorescent molecules in 10 nMAtto532
and 10 nM Atto655 solutions were slowed down by preparing samples containing di�erent
amounts of highly viscous glycerol. In the �tting procedure the focal volume determined by
the �rst measurement without glycerol was �xed (532 nm excitation: wr = 0.2501 µm, wz =
1.5131 µm, 633 nm excitation: wr = 0.2492 µm, wz = 1.3063 µm). The recorded FCS data and
normalized �t curves (�gure 4.2) show the increasing time lag with increasing concentration
of glycerol. An overview of the determined di�usion coe�cients for both dyes can be found
in table 4.2. It must be noted that glycerol can cause quenching and higher triplet state
populations of the �uorescent molecules. The e�ects are more apparent for Atto655, resulting
in larger error bars at short time scales. Additionally, glycerol alters the focal volume due to
its high refractive index of n = 1.4746.

a) b)

Figure 4.2. | FCS curves investigating the In�uence of the viscosity by the medium: FCS data
and �t curves of (a) 10 nM Atto532 and (b) 10 nM Atto655 in PBS and increasing amount
of glycerol.
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Table 4.2. | Di�usion coe�cients D in dependence of glycerol content determined by FCS.
Glycerol content 0 % 10% 20% 30% 40% 50% 60% 70% 80%
D [µm2 s−1] (Atto532) 373 266 193 120 103 59 28 11 8
D [µm2 s−1] (Atto655) 393 279 210 113 94 43 27 14 7

Two-photon excitation

The characterization of two-photon excitation (TPE) employing the 780 nm pulsed femtosec-
ond laser was conducted using similar parameters as for one-photon measurements. FCS
curves were recorded with 60 s runtime and Atto532 proved to be a suitable dye for two-
photon absorption. Two-photon microscopes usually do contain a detection pinhole since
optical sectioning is already achieved by the inherently low axial spread of the two-photon
point spread function. However, the same detection path is used for one- and two-photon
absorption at 780 nm excitation. To characterize the in�uence of the detection pinhole, FCS
spectroscopy on ∼70 nM Atto532 at the same excitation power of 4.7mW were recorded with
and without detection pinhole (�gure 4.3) . In case of a detection pinhole in place, the FCS �t
curve shows an increase in signal-to-noise ratio and a shift to lower time scales. The corre-
sponding �t values (table 4.3) con�rm a signi�cantly smaller observation volume, particularly
in z-direction by ∼63 %.

Figure 4.3. | Confocal pinhole e�ect on two-photon FCS: The FCS curve recorded with detection
pinhole (purple) shows an improvement of the axial resolution due to the shift to lower
time scales compared to the FCS curve without detection pinhole (black). Error bars are
indicated as vertical lines have lower values for the measurement with detection pinhole.
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Table 4.3. | FCS �t values of detection pinhole e�ect on TPE.
FCS curve Counts [kHZ] � [kHz] N wr [µm] wz [µm] � 2
TPE no pinhole 92.0602 18.9657 4.854 0.379 1.623 0.21
TPE with pinhole 41.9187 13.4203 3.123 0.347 1.020 1.17

This can be explained by the pinhole acting as an additional �lter for scattered light. Hence,
the resolution can also be improved for TPE by using a detection pinhole which comes at the
cost of a decreased count rate and brightness.

In order to actually con�rm TPE, the intensity of a solution of 50 nM Atto532 was recorded
with increasing power of the 780 nm laser in a range of 2mW–100mW. The average intensity
of each measurement and the excitation power was plotted in a double logarithmic plot
(�gure 4.4). According to the square power law of TPE a linear �t should therefore have a
slope of 2 which is the case for excitation powers in the range of 3mW–7mW. Starting at
8mW, several e�ects cause a deviation from the square power dependence, most importantly
the saturation e�ects.[87] First, a 50 nM Atto532 solution provides only a limited amount of
molecules in the focal volume to be excited by the laser. Secondly, large excitation powers lead
to a higher probability of two-photon absorption in the outer region of the PSF. This results in
a considerable increase of the excitation volume which should slightly compensate for the low
concentration of �uorescent molecules. However, the measurement values start to diverge
from the square power law before the true intensity saturation is reached at ∼1.7 × 105 counts.
The explanation can be derived from the corresponding FCS curves shown in �gure 4.5. In the
range of 3mW–7mW (�gure 4.5a, the 2mW measurement is omitted for clarity), an increase
of the signal-to-noise ratio can be observed with increasing excitation power and the FCS
curves have the same reproducible shape. The �t values (table 4.4) show a stable focal volume
3mW–6mW which is independent of the excitation power. In particular, the una�ected axial
width is in contrast to one-photon excitation measurements. The �t values of the 7mW
measurement begin to suggest a smaller axial width of the focal volume which is a continuous
trend for the following 8mW–18mW range. Due to reasons described in the following, the
calculated focal volumes as well as the di�usion coe�cient are not reliable above laser powers
of 6mW. Beginning at 8mW the correlation amplitude is steadily increasing until 18mW
excitation power is reached (�gure 4.5b). The overall �uorescence intensity maximum is
obtained at ∼14mW excitation power. This can be explained by photobleaching which lowers
the e�ective concentration of �uorescent molecules in the observation volume. At ∼20mW
the correlation amplitude begins to decrease and �attens at 100mW excitation power (�gure
4.5c). Two factors are the most likely cause for this phenomenon. While the �uorescent
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Figure 4.4. | TPE laser power dependence: Double logarithmic plot of detected intensity and
average excitation power. Fitted measurement values are represented by blue dots and
con�rm the square power law. The values in�uenced by saturation and bleaching e�ects
are excluded from the �t (red dots).

molecules are still being photobleached, the high photon �ux achieved at these laser powers
lead to a signi�cant enlargement of the PSF. Thus, the e�ective concentration with respect
to the excitation volume increases at a greater rate than the concentration decrease caused
by photobleaching. Regarding the correlation amplitude, the value at which the two e�ects
would compensate each other is ∼0.15 using an average laser power of ∼47mW. The other
factor to be considered is the larger contribution from uncorrelated background at high
laser powers. Figure 4.5d displays the normalized FCS curves of the 7mW–50mW range
where photobleaching and saturation e�ects become apparent. The 100mW measurement
is omitted for clarity since its FCS curve coincides with the the FCS curve of the 50mW
measurement. Here, it can be seen that photobleaching plays a role throughout the power
range and consistently increases with the excitation power. Photobleaching causes the FCS
curves to shift to lower relaxation time scales since the �uorescent molecules are destroyed
before they are able to di�use out of the focal volume. The saturation e�ects can be in�uenced
by a number of parameters. Provided a stable alignment and that the used optical elements do
not change, the shape of the PSF solely depends on the laser intensity and could therefore be
calibrated. However, the photobleaching e�ects additionally depend on the properties of the
observed �uorescent species, e.g. the stability and absorption cross section. With respect to
Atto532, it can therefore be concluded that laser powers exceeding 7mW should be avoided
in order not to bias results on unknown samples.

42



4. RESULTS AND DISCUSSION

a) b)

c) d)

Figure 4.5. | Two-photon FCS laser power dependence: (a) 3mW–7mW: Reproducable shape and
smaller errors at higher laser power. (b) 8mW–18mW: Increasing correlation amplitude
with higher laser power caused by photobleaching. (c) 20mW–100mW: Decreasing
correlation amplitude with higher laser power caused by the increasing excitation volume
and background contribution (d) 3mW–50mW: Normalized FCS curves showing the
decreasing relaxation time scale in dependence on the laser power due to photobleaching.
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Table 4.4. | Two-photon FCS �t values of the 2mW–7mW range.
Laser power Counts [kHZ] � [kHz] N wr [µm] wz [µm] � 2
3mW 19.6411 8.4327 2.329 0.343 0.968 1.41
4mW 33.8468 14.4795 2.337 0.348 0.902 0.87
5mW 52.4182 22.3634 2.344 0.343 0.918 0.74
6mW 71.0921 30.5646 2.326 0.340 0.932 0.89
7mW 89.9833 38.5897 2.332 0.345 0.797 1.11

4.1.2. Characterization via scanning images

Scan image of �xed HeLa cells were recorded to characterize and benchmark the developed
imaging system for live cell imaging. In particular we were interested in testing the correct
implementation of the piezo scanning stage, the programmed scanning routine, and the overall
alignment of the setup allowing for simultaneous one- and two-photon imaging. Apart from
inherent piezo scanning artefacts such as non-linearity, hysterisis and creep e�ects, the biggest
experimental challenges to solve is the synchronization was the imperfect synchronization
of the stage movement and the actual image acquisition. While the piezo stage is controlled
via a �eld-programmable gate array (FPGA), the TCSPC cards responsible for counting and
assigning the detected photons to pixels are synchronized to the repetition rate of the pulsed
femtosecond laser. The communication speed between the computer starting the scanning
program and the FPGA card �uctuates on the order of 2ms–3ms. This e�ect by itself leads to a
constructed image actually starting at a x-shifted pixel for the whole frame. This experimental
obstacle could be successfully compensated by adding an appropriate waiting time for the
TCSPC card matching the di�erence of the communication speed. However, the piezo stage
scans each line in the same direction, i.e. at the end of each line the stage moves to original
x-position and a shifted y-position. The result is a compressed mirror image on the left-hand
side of the shifted starting point, representing the recorded image during the repositioning of
the stage. Furthermore, a constant additional pixel shift is introduced between each scanning
line. Therefore, an additional waiting time per line would be necessary in order to match
the time its takes the piezo stage to return to its original x-position and start the next line
scan. The implementation of the latter wait time is not trivial as it varies with experimental
settings, such as the number of lines, the size of the scanning area and the total measurement
time between di�erent scans. Figure 4.6 shows two examples of raw data images of �xed
HeLa cells which feature the encountered artefacts. To correct and prevent these delay times,
a new approach is currently implemented, based on a common synchronization via the FPGA.
A full implementation and characterzation, however, could not be achieved anymore during
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Figure 4.6. | Raw data images including scanning artefacts: Unaltered scan images show a pixel
line shift and compressed mirror images due to imperfect synchronization of the piezo
stage and TCSPC card. The images were obtained via 532 nm excitation of unstained (left
panel) and with WGA488 stained HeLa cells (right panel) using an image acquisition time
of 180 s and 512 lines.

this thesis. In order to minimize the scanning artefacts, images were recorded using a long
acquisition time of 180 s. Afterwards, the shifted pixels were corrected in post processing
procedures of the data. Using the image processing package Fiji (distribution of ImageJ) a
transformation matrix was constructed to shift each pixel line with respect to each other by
a constant value. Since the degree of the image tilt and the shifted start position is highly
reproducible for given scanning parameters, the overall alignment of the three excitation
sources (532, 633, 780 nm) could be superimposed. Lateral shifts between scanned images
for the three excitations could be successfully corrected by ImageJ. The pixiel shift between
532 and 633 nm was determined by co-localization of simultaneously recorded scan images.
Images for 532 and 780 nm excitation were recorded sequentially, as their signal is detected in
the same channel. No optical �bers were used for overlapping the di�erent wavelengths and
hence each beam bath was aligned separately. The pixel shift was determined by colocalization
and the images obtained from 532 nm and 780 nm excitation were not recorded simultaneously
because the signal was detected in the same channel. From the ratio of the total number of
pixels and the known size of the scan area, the actual distances were obtained and are listed
in table 4.5.
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Table 4.5. | Calculated x-y-shifts between green, red and two-photon excitation.
Compared exc. wavelength x-shift [µm] y-shift [µm]

532 nm↔ 633 nm 1.16 0.12
532 nm↔ 780 nm 2.91 0.23
633 nm↔ 780 nm 4.07 0.61

Although it is challenging to perfectly superimpose three independent laser systems for a
collinear excitation of the sample, the determined shifts are su�ciently small to get very
similar image information. Considering the drift occurring in successive measurements taking
at least 9min, the overall y-shift (parallel to the scanning axis) is especially small. The x-shift
(perpendicular to the scanning axis) is signi�cantly larger. As the incoupled laser lines are
centered with respect to the objective, the displacement in x can be assigned to a the scan
artefact of an improper placed sample on the piezo stage. Only if the sample is positioned and
properly clamped under 90° with respect to the objective’s surface, chromatic aberrations and
deviations in the scan position are avoided. Very likely is also the faster acquisition speed
in x-direction introduced by the scanning mechanism, i.e. the sample itself is more likely
to drift in x-direction than in y-direction. In both cases, however, the x- and y- shift can be
compensated. Figure 4.7a and 4.7b shows two tilt-corrected scan images of WGA488 stained
HeLa cells recorded in the green channel and excited by the 532 nm and 780 nm laser. The
composite image after colocalization is shown in �gure 4.7c. Considerably less background
signal can be observed in case of two-photon excitation. A complete overview including the
bright�eld options and 633 nm excitation and is illustrated in �gure 4.8 which shows images
of unstained HeLa cells. Hence, the disparity in the image quality of each excitation method
is mainly caused by the di�erent e�ciency of generating auto�uorescence. In particular, 4.8e
demonstrates the strong absorption of two 780 nm photons since the compounds emitting
auto�uorescence (NAD(P)H, collagen, ribo�avin, aromatic molecules) primarily absorb in the
UV to blue range.
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Figure 4.7. | Scan images of stained HeLa cells: (a) Scan image obtained with 532 nm excitation
after line shift correction. (b) Scan image obtained with 780 nm excitation after line shift
correction. (c) Colocalized image of (a) and (b). Images were recorded in the green channel
with 180 s acquisition time and 512 lines.
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Figure 4.8. | Scan images of unstained HeLa cells: (a) Bright�eld image of the CMOS camera. (b)
Bright�eld image of the Andor camera. (c) 633 nm excitation. (d) 532 nm excitation. (e)
780 nm excitation.
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4.2. Raman measurements and simulations

4.2.1. Raman spectra

The metabolism and storage of sugars inside cells is highly complex. A vast number of
di�erent monosaccharides can be used by cells for various biological functions. In this work,
the priority was to study the most important sugar derivates (see section 3.3.1 and 3.3.2)
used as an energy source and as building blocks to create complex glycans via glycosidic
linkages. The measured Raman spectra of these sugars are presented in the following in order
to constitute the di�culty of di�erentiating these sugars via spontaneous Raman scattering,
especially under natural conditions in solution. Furthermore, Raman spectra of common
sugars and solvents exhibit similar vibrations with respect to Raman spectra of living cells
and also feature the same Raman-silent region in the range of 1800 cm−1 to 2800 cm−1. Hence,
to get an idea of the Raman shifts and intensity ratios of promising Raman labels such as
alkyne, azide or deuterated moieties, Raman spectra of solvents and Raman-labeled sugars
are compared with their untagged counterparts. The measured spectra also serve as the basis
for simulations used to estimate the detection limit and test the performance of quantitative
analysis techniques (see section 4.2.2).

All monosaccharides mainly consist of carbon, oxygen and hydrogen atoms. Accordingly,
they all show Raman bands in similar regions depending on the di�erent vibrational modes.
The most important types of vibrations and Raman shift regions are listed in table 4.6.[88] C=O
vibrations only exist in acetylated sugar molecules. O-H vibrations are covered by water.

Table 4.6. | Characteristic vibrations in Raman spectra of monosaccharides.[88]

Type of vibration Region of Raman shift
C-C vibrations 800 cm−1 − 1200 cm−1

C-H stretching 2800 cm−1 − 3100 cm−1

C-H deformation 1380 cm−1 − 1470 cm−1

C-OH stretching 1100 cm−1 − 1210 cm−1

C-OH deformation 750 cm−1 − 800 cm−1

C=O stretching 1550 cm−1 − 1800 cm−1

O-H stretching 3200 cm−1 − 3800 cm−1

O-H deformation 1600 cm−1 − 1700 cm−1
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Figure 4.9a displays the structure of the most relevant monosaccharides D-glucose, D-galactose
and D-mannose. The corresponding normalized Raman spectra in solid phase and in solution
(�gure 4.9b-c) at 1M concentration show the signi�cant broadening as well as intensity
and spectral shifts of individual peaks caused by the solvation in water. In particular, the
characteristic galactose peaks in solid phase at 1032 cm−1 and 1280 cm−1 are not observable
in solution and galactose is nearly indistinguishable from mannose. Only glucose could be
cleary identi�ed in a sugar mixture by the strong peak at 920 cm−1.
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Figure 4.9. | Raman spectra of common sugars: a) Chemical structures of glucose, mannose and
galactose. b) Corresponding Raman spectra in solid phase. c) Corresponding Raman
spectra in water at 1M concentration. The insets show the zoomed in characteristic
regions. O-H vibrations caused by water are depicted in grey background.
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Similar circumstances can be recognized in the normalized Raman spectra of N -acetyl-D-
glucosamine (GlcNAc), N -acetyl-D-mannosamine (ManNAc) and N -acetyl-D-galactosamine
(GalNAc), which are used as building blocks for glycans in the endothelial cell membrane
(�gure 4.10). The Raman spectra show strongly overlapping peaks varying in intensity.
Compared to normal sugars, the main di�erence is the high intensity detected in the C-H
stretch region (2800 cm−1 − 3100 cm−1) caused by the CH3 moiety. Additionally, the strong
C=O stretching vibration can be observed for all acetylated sugars at ∼1642 cm−1. This Raman
band contributes to the so-called amide l region (1640 cm−1–1700 cm−1) of living cells and is
therefore convoluted with various other compounds.[89,90]
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Figure 4.10. | Raman spectra of acetylated sugars: a) Chemical structures of N -acetyl-
D-glucosamine (GlcNAc), N -acetyl-D-mannosamine (ManNAc) and N -acetyl-D-
galactosamine (GalNAc). b) Corresponding Raman spectra in solid phase. c) Corre-
sponding Raman spectra in water at 1M concentration. The insets show the zoomed in
characteristic regions. O-H vibrations caused by water are depicted in grey background.
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Radioactively methylated sugars are used to study the up- and downregulation of the blood-
brain barrier glucose transporter since they directly compete with glucose transport.[91,92]

Characteristic peaks of in solid phase at 830 cm−1 and 875 cm−1 can not be resolved in solution
in the presence of other compounds. This also applies to the characteristic peaks of methyl
β-D-glucose (e.g. 903 cm−1) and methyl β-D-mannose (980 cm−1). Compared to normal sugars
(�gure 4.9), an increased intensity in the C-H stretch region (2800 cm−1 − 3100 cm−1) and
additional peaks at 2849 cm−1 and 3014 cm−1 can be observed due to the CH3 moiety. For
Raman spectroscopy however, sole methylation would not be adequate to distinguish these
sugars from other substances in living cells.
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solid phase. c) Corresponding Raman spectra in water at 1M concentration. The insets
show the zoomed in characteristic regions. O-H vibrations caused by water are depicted
in grey background.
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Figure 4.12. | Raman spectra of glucose derivates: a) Chemical structures of D-glucose, N -acetyl-
D-glucosamine (GlcNAc), 2-Azido-2-deoxy-D-glucose (N3-Glc) and methylβ-D-mannose
. b) Corresponding Raman spectra in water at 1M concentration. The spectrum of N3-Glc
shows the strong azide stretching vibration at 2123 cm−1 in the Raman-silent region of
living cells. O-H vibrations caused by water and C=O stretching vibrations are depicted
in grey background.

Multiple Raman tags are quali�ed for the quanti�cation of monosaccharides. Moieties
such as alkyne, nitrile, azide or deuterium have unique Raman bands in the desired region
(1800 cm−1 − 2800 cm−1) which do not overlap with Raman scattering from any endogenous
molecule in live cells. The synthesis of alkyne and nitrile labeled sugars was outside the scope
of this work since it involves synthetic chemistry methods, e.g. ketone-aminooxy/hydrazide
ligation[93,94], Staudinger ligation[95] or Michael addition.[96] Azide sugars, however, are com-
mercially available and could easily be used for experiments. Figure 4.12 provides an overview
of normalized Raman spectra of examined glucose derivates including 2-Azido-2-deoxy-D-
glucose (N3-Glc) at 1M concentration. N3-Glc shows Raman bands at 856 cm−1, 911 cm−1,
960 cm−1, assigned to skeletal C-C vibrations. The strong peaks at 1064 cm−1 and 1130 cm−1

could be assigned to exocyclic C-O and C-OH vibrations, respectively.[97] Peaks at 1264 cm−1,
1372 cm−1, 1468 cm−1 are assigned to CH2 and CH3 deformations whereas peaks at 2906 cm−1

and 2946 cm−1 correspond to CH stretching vibrations. Most importantly, N3-Glc exhibits the
strong azide stretching vibration at 2123 cm−1 withing the Raman-silent region of cells.
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In addition to azide sugars, it was possible to examine and experimentally utilize deuterated
methyl α-D-glucoside, which was synthesized in collaboration with Adrian Müller-Deku,
M.Sc (Group of Thorn-Seshold, PhD). Assuming a diatomic molecule, deuterium substitution
of hydrogen leads to a doubled reduced mass of and thus to a decreased Raman shift of

√2.
This phenomenon can be clearly observed in the Raman spectrum of deuterated methyl α-D-
glucoside, showing the strong C-D stretching vibration in the range of 2060 cm−1 − 2270 cm−1

and C-D deformations at 831 cm−1 and 963 cm−1. Since methyl α-D-glucoside was deuterated
site-selectively at the carbon positions only a weak signal for O-D stretching vibrations
(∼ 2400 cm−1 − 2600 cm−1) is obtained.
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region of living cells.
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The C-D band of deuterated methyl α-D-glucoside, is rather broad and shows similar signal
strength to the C-H vibration. When compared to 2-azido-2-deoxy-D-glucose (N3-Glc), N3-Glc
features an immensely sharper Raman resonance in the cell-silent region, which facilitates
its detection in in presence of further Raman-tagged sugars. As alkynes are amongst groups
with highest Raman cross-sections, the simplest carbohydrates carrying an alkyne group,
namely propyn-1-ol and butyn-1-ol, were measured in comparison to known solvents. The
spectra of ethanol and ethylenglycol were used in simulations of multicompound spectra
described in the following section (section 4.2.2). Figure 4.14 shows the Raman spectra of
solvents normalized to 1M concentration. In particular, propyn-1-ol and butyn-1-ol exhibit
the C≡C moiety giving rise to the very strong signal at 2123 cm−1 which can be used to detect
alkyne tagged sugars inside living cells. Both substances possess a large Raman cross section
and signals that are 2-3 fold higher than their C-H stretch vibration. Therefore, alkynes are
the most promising Raman-labels for the quanti�cation of sugars at low concentrations since
they can signi�cantly enhance the detection sensitivity.
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4.2.2. Estimation of the detection limit

For estimating the detection limit of a Raman labeled sugar in cells, at �rst spontaneous
Raman spectra of Raman tagged sugars were recorded at a concentration of 1M in water. (see
section 4.2.1 for results and 3.3.1 for experimental details). To ensure comparability, spectra
were taken under identical conditions and experimental care was take to ensure the following
premises:

• A constant excitation power of 1.8W and excitation wavelength of 532 nm used.

• All spectra are acquired with constant spectral resolution and constant integration time.

• Background signal remains constant.

Two examples of 0.1M 2-azido-2-deoxy-D-glucose (N3-Glc) simulated spectra with added
noise (SNR = 9) are shown in �gure 4.15a-b according to the two examined scenarios of a
single peak spectrum and a multicompound spectrum. Beside N3-Glc, the multicompound
spectrum contains glucose, galactose, mannose, methylglucose, methylgalactose, methyl-
mannose, ethanol and ethylenglycol. While the accuracy of normal linear decomposition
to correctly identify the original spectral input mainly depends on the quality of the used
reference spectra, PCA analysis is mostly in�uenced by the total number of spectra in the data
set and the chosen rank in approximation, , i.e. the number of incorporated principle compo-
nents. Figure 4.15c-d displays two PCA biplots of azidoglucose for varying concentrations of
sugar and chemical background. Figure 4.15c suggests that the variation caused by the single
azide stretch peak can be reasonably well described by component 1 as it can be completely
separated from the background, which is described solely by component 2. However, this
changes with increasing noise and decreasing concentration such that the variation of the
azide peak is best described by component 2 similar to the loading plot for a multicompound
spectrum shown in �gure 4.15d. Thus, a rank 2 approximation was chosen for both scenarios.
Both analysis methods were applied to single and multicompound spectra varying in SNR
(1-18) and concentration (µM-mM). The corresponding standard deviation of the accuracy
in percent is shown in �gure 4.16 for each method. For normal linear decomposition (�gure
4.16a-b), the limit of reliability is reached at ∼10−4M concentration of N3-Glc for high SNR val-
ues above 10 and at ∼10−3M for SNR values below 0.5. Using PCA this limit can be pushed to a
concentration of ∼10−5M for SNR values above 10 (�gure 4.16c) and ∼5 × 10−5M for SNR values
below 0.5 (�gure 4.16d) which resembles physiological conditions. Interestingly, the limits of
the analysis methods behave di�erently when comparing the results for multicompound and
single peak spectra. In case of linear decomposition a slight decrease in accuracy is obtained
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Figure 4.15. | Simulated spectra and PCA biplots: a) Simulated single peak spectrum of 0.1M azi-
doglucose (N3-Glc) at the range of the characteristic azide stretch vibration. b) Simulated
broad-band multicompound spectrum containing 0.1 M N3-Glc. c) PCA biplot of single
peak spectra with di�erent azidoglucose concentrations. d) PCA biplot of multicom-
pound spectra containing di�erent concentrations of N3-Glc. Blue lines represent the
individual loadings for each spectrums and the direction of maximum variance. Dots
are the corresponding principle components of the whole data set. The characteristic
azide stretch region (2000 cm−1–2200 cm−1) is displayed in red.

if only a single peak is analyzed, most likely due to the close resemblance of the azidoglucose
spectrum to the background and hence less linear equations exist for the di�erentiation of
these two components. In contrast, the accuracy of PCA slightly improves for the single peak
spectrum since the variation of one peak against a �at constant background can be clearly
separated. However, it must be noted that these results are not generally applicable as they
are only valid for the two simulated scenarios and thus primarily give an approximation of
the detection limit. Furthermore, PCA thrives on the size of the analyzed dataset whereas
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Figure 4.16. | Analysis of simulated Raman spectra via linear decomposition and PCA: Stan-
dard deviations of quantitative analysis of azidoglucose (N3-Glc) in dependence of SNR
and concentration. a) Linear decomposition of N3-Glc in multicompound spectra. b) Lin-
ear decomposition of N3-Glc in single peak spectra. c) PCA of N3-Glc in multicompound
spectra. d) PCA of N3-Glc in single spectra.

linear decomposition can only be applied to one spectrum at a time and does not gain any
bene�t from large datasets. The in�uence on the analysis quality of parameters such as the
peak widths, �atness of the background and eventual phase shift must also be considered.
If only one peak of interest is observed PCA is a highly useful tool for signal denoising and
can be accompanied by methods which include peak �tting algorithms. Overall, considering
naturally occurring sugar concentrations in the µM and mM range, the limits reached by PCA
are promising and con�rm the feasibility of the project.
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4.2.3. Live Cell Measurements

Sugar serves as the main energy source in living cells. To visualize its cellular uptake by
Raman scattering, live cell imaging was conducted using a inverted, confocal scanning Raman
microscope (see section 3.3.3) in collaboration with (Group of Prof. Dr. C. Haisch, TUM
München). The main goal in these proof-of-concept experiments was to investigate the
survivability of HeLa cells grown with Raman tagged sugars and to show the feasibility of
monitoring sugar uptake into the cell. The main subject of interest was the overall e�ect of
incubating living HeLa cells with Raman labeled sugars and if the eventually metabolized
sugar can be detected inside the cell. Two types of sugars were used for the experiments,
namely N-azidoacetylmannosamine (ManNAz) and deuterated methylglucose. Although cells
were successfully cultured using deuterated methylglucose no confocal Raman scans could
be performed due to the limited amount of measurement time. Here, the data analysis and
evaluation of the experiment using ManNAz is presented. The excitation power of the red laser
(633 nm) was set to 20mW with integration time of 0.1 s for each pixel for all measurements.
For each spectrum an array of 1600 elements (data points) was be obtained at a detection
region of 643 cm−1–3113 cm−1 which corresponds to a spectral resolution of ∼1.54 cm−1. HeLa
cells simultaneously cultured with 20mM D-glucose dissolved in growth medium served as
reference samples. An example is shown in �gure 4.17 which also depicts the applied analysis
procedure. One Raman spectrum per 1 µm2 was recorded over a scan area size of 60×80 µm
resulting in a total of 4800 spectra. Figure 4.17b shows the complete data set in a PCA biplot
after the correction of outlier spectra. Since the principal components (colored dots) represent
the maximum amount of variance contained in all spectra of the data set, spectral regions
of interest were examined. A large variance can be directly observed in the CH-stretch
region (2800 cm−1–3100 cm−1, green dots) and the amide l region (1640 cm−1–1700 cm−1, red
dots) mainly caused by C=O-vibrations of polypeptides.[89,90] The spectral region of the azide
stretch vibration (2050 cm−1–2150 cm−1) is represented by purple dots and shows no change
in variance. The Raman map was constructed by integrating the intensity of the CH-region
of each spectrum as a function of spatial coordinate (�gure 4.17d). In order to calculate an
average spectrum of the cell and the outside region, the spectra were assigned to either the
cell or the surrounding medium (�gure 4.17c). The distinction between spectra was made by
a standard deviation threshold of the CH-stretch intensity, which was set to 1.9 fold deviation
for the cell.
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The obtained mean spectra and the di�erence spectrum of cell and medium (�gure 4.18)
show the amide l vibrations at 1657 cm−1, the strong CH2 and asymmetric CH3 vibration at
1447 cm−1, broad peaks in the amide lll region 1200 cm−1–1340 cm−1, the broad C−OH peak at
1085 cm−1 and the C−N stretch vibration at 715 cm−1. The sharp peak at 1000 cm−1 is caused
by the aromatic ring deformation of the amino acid phenylalanine.[29] All observed peaks
represent vibrations of lipids and proteins.
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The confocal Raman scan and data analysis of a HeLa cell incubated with ManNAz for
one hour and washed with PBS afterwards is shown in �gure 4.19. Raman spectra were
recorded with the same settings over a scan area of 50×100 µm yielding 5000 spectra. The
PCA biplot after correction of outlier spectra reveals that no azide stretch vibration in the
range of 2050 cm−1–2150 cm−1 was detected for the �rst two components (�gure 4.19b). For
all components greater than two, the explained variance �attens to ∼ 0.2 % and hence were
assigned to random noise. The calculated mean spectra and the di�erence spectrum (�gure
4.20) show the amide l vibrations at 1655 cm−1, the strong CH2 and asymmetric CH3 vibration
at 1447 cm−1, broad peaks in the amide lll region 1200 cm−1–1340 cm−1, the broad C−OH peak
at 1083 cm−1 and the C−N stretch vibration at 713 cm−1. The sharp peak at 1000 cm−1 is caused
by the aromatic ring deformation of the amino acid phenylalanine. The calculated mean
spectra (�gure 4.20) show no signi�cant di�erence the spectra obtained from the cell incubated
with glucose. Various reasons could inhibit the detection of the azide stretch vibration and
additional experiments would have to be performed to get further insight. Although the
incubation with ManNAz did not seem to in�uence the HeLa cells in an observable manner
the question remains if ManNAz was actually metabolized and built into the membrane or if it
could merely not be detected. Since the experiment could only be carried out once and due to
the limited amount of data, no de�nitive answer can be given at this point. Regarding the cell
preparation, parameters such as incubation time and the concentration of the Raman-labeled
sugar in the growth medium certainly play an important role. Furthermore, the scan settings
could be adjusted for optimal detection sensitivity, e.g. the laser excitation power or the
integration time per pixel. The potential damage in�icted on the measured cell must be
considered if the overall exposure of the laser is increased. Another option would be to use a
532 nm laser to increase the Raman signal but the excitation at this wavelength could lead to
higher �uorescent background.
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Combining the advantages of �uorescence microscopy with stimulated Raman microscopy
(SRS) including nonlinear optical (NLO) imaging on a single setup is certainly an interesting
and promising concept. While SRS can provide a high amount of speci�c chemical properties
of the sample at high concentrations and in a noninvasive manner, �uorescence microscopy
is unmatched regarding its high detection sensitivity which can be used to obtain information
at low concentrations.

In this thesis, the assembly of a microscope capable of multimodal imaging by coupling
single and multiphoton excitation into one setup was presented. Two-photon absorption was
con�rmed via the square power law, �uorescence correlation spectroscopy and piezo scan
images of HeLa cells were used to align and characterize the constructed microscope. The
excitation volumes of the lasers determined by �uorescence correlation spectroscopy are in
the range of experimentally achievable values. A fully functioning imaging system and stable
alignment was shown via scan images of �xed WGA488 stained and unstained HeLa cells.
Regarding the 1050 nm laser beam further e�orts will be made for a full characterization.
Although a �uorescence signal of Atto532 using 1050 nm excitation was observed, a FCS
curve could not be obtained at the end of this thesis. This is likely caused by the �ber output
of the 1050 nm laser exhibiting an oval shape and hence the beam pro�le is not a gaussian
pro�le even after spatial �ltering. Using a pinhole with smaller diameter (∼ 25 µm) could solve
this problem at the expense of a signi�cantly reduced excitation power. However, since the
maximum output power of the 1050 nm laser can be adjusted up to 1.5W even a power loss of
∼ 90% after the pinhole would still be su�cient to facilitate two-photon absorption. Another
important factor is the collimation of the 1050 nm beam and the possibility of chromatic
aberrations, induced by the used objective, causing a considerable focal shift along the optical
axis. These issues can be identi�ed and resolved in the near future by performing bead scans
in z-direction and adjusting the collimation accordingly or choosing an appropriate pinhole
size. Apart from SRS, spatial and temporal overlap between both excitation sources, 1050 nm
and 780 nm, will also allow two photon absorption by molecules absorbing at approximately
458 nm.
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The second project involved testing the feasibility of detecting and quantifying Raman-
labeled sugars featuring signals withing the Raman-silent region of the cell. Based on sponta-
neous Raman scattering, a library of Raman spectra of solvents and sugars in solid state and
solution was acquired. The obtained dataset was further used for simulating low concentration
and signal-to-noise conditions. These simulations were used to test analysis algorithms based
on normal linear decomposition and principle component analysis (PCA). PCA outperformed
normal linear decomposition by at least one order of magnitude and was able to accurately
determine the concentration of azidoglucose at ∼10−5M for high SNR and ∼5 × 10−5M for low
SNR values. Considering intracellular sugar concentrations in the µM and mM range, the
azide stretch vibration should be detectable under physiological conditions provided that the
cells metabolize these labeled sugars in similar quantities. For experimental con�rmation of
this concept, HeLa cells were successfully cultured with Raman-labeled sugars and examined
using a confocal Raman scanning microscope. The desired azide stretch vibration could not
be detected after incubating HeLa cells with N-azidoacetylmannosamine (ManNAz). Nev-
ertheless, the similar chemical composition of these cells compared to cells solely cultured
in D-glucose suggests that culturing cells with Raman-labeled sugars can be conducted in a
noninvasive manner. At the current state the MATLAB script used for the analysis is tailored
to the structure �le exported from the WITec software. However, the variables can be easily
rewritten such that the script can be applied to any hyperspectral data cube. In future experi-
ments, a rewarding approach will certainly be the implementation of sophisticated cluster
analysis methods such as k-means clustering and agglomerative hierarchical cluster analysis
(AHCA).[98–102] Furthermore, complementary clustering via PCA can also be performed by
creating Raman maps based on individual principal components. These methods hold great
promises to pre-sort and di�erentiate similar cellular spectra of di�erent cell compartments
in an unsupervised manner. Since sugars such as ManNAz and D-glucose are metabolized
di�erently by the cell, an average cell spectrum is not the best representation to quantify
sugar uptake. While ManNaz is employed as building block in glycosylation, D-glucose serves
mainly as energy source in the glycolytical pathway. Hence their localization in di�erent
areas of the cell, i.e. the cytoplasm and cell wall are expected. A combination of cluster
analysis for pre-sorting of spectra and additional PCA for noise reduction will be of great
bene�t to identify even small amount of uptaken sugar molecules.
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Within the scope of this thesis, important steps have been accomplished to investigate
sugar uptake at the single cell level. On one hand, a combined multimodal imaging system
has been successfully developed that provides single molecule sensitivity to visualize and
investigate individual GLUT membrane transporter. The feasibility to spectroscopically detect
transported sugar molecules by Raman scattering was established and new analysis methods
to trace Raman-labeled sugars in living cells was developed. The spectroscopic analysis of
commercially available and even synthesized sugars clearly showed that Raman-labeling of
sugars, e.g. by azide moieties or isotopic markers, can be used to discriminate those against
the cellular background. First cell experiments successfully proved the viability of cells to
modi�ed sugars. With the implementation of SRS on the home-built setup in the near future,
the foundation was laid for studying sugar uptake activities in vivo in a completely new way.
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A. Appendix

MATLAB script used for the analysis of live cell data obtained from confocal Raman scanning:

1 %% Analysis of hyperspectral data

2 %select matlab file, import as a structure and rename it

3 [fileName,PathName] = uigetfile('','Select a Large-Area-Scan');

4 cd(PathName);

5 A = load(fileName);

6 Names = fieldnames(A);

7 fName = Names{1,1};

8 Label = strcat('LAS',fName(17:19));

9 %get x- and y-Data: geometrical parameters of the map

10 %x: points per line: A.(fName).imageaxisscale{2,1}

11 %y: Lines per image: A.(fName).imageaxisscale{1,1}

12 ImageData.ySize = double(A.(fName).imageaxisscale{1,1});

13 ImageData.xSize = double(A.(fName).imageaxisscale{2,1});

14 spectra = double(A.(fName).data');

15 %% Perform PCA

16 % choose a specific Rank or an explained threshold

17 prompt = {'Rank' 'Explained'};

18 dlg_title = 'PCA';

19 dims = [1 40];

20 defaultans = {'3' '1'};

21 Answer = inputdlg(prompt,dlg_title,dims,defaultans);

22 rank = str2double(Answer{1,1});

23 perc = str2double(Answer{2,1});

24 [coefs,score,¬,¬,explained,mu] = pca(spectra,'algorithm','svd');

25 figure

26 LoadingPlot = biplot(coefs(:,1:2),'Scores',score(:,1:2));

27 %% prepare z-Data

28 yData.Original = reshape(double(A.(fName).data'),[size(A.(fName).data,2),...

29 size(ImageData.ySize,2),size(ImageData.xSize,2)]);

30 prompt = {'Threshold'};

31 dlg_title = 'Determine Outliers';

32 dims = [1 40];

33 defaultans = {'700'};

34 Answer = inputdlg(prompt,dlg_title,dims,defaultans);

35 threshold = str2double(Answer{1,1});

36 for i=1:size(spectra,2)

37 for j=1:size(spectra,1)

38 if spectra(j,i) > threshold

39 outliers(:,i) = spectra(:,i);

40 end
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41 end

42 end

43 %% selected rank approximation

44 while sum(explained(1:rank,:))<perc

45 rank = rank + 1;

46 end

47 rec= score(:,1:rank) * coefs(:,1:rank)' + mu;

48 %% background correction

49 % Select order, threshold and costfunction via UI

50 x = (1:size(rec,1))';

51 [¬,¬,¬,order,threshold,¬] = backcor(x,mean(rec,2));

52 %perform background correction

53 spectra_backcor = zeros(size(rec,1),size(rec,2));

54 for k=1:size(rec,2)

55 if isempty(rec(:,k))==0

56 [EST,¬,¬] = backcor(x,rec(:,k),order,threshold,'atq');

57 spectra_backcor(:,k) = rec(:,k)-EST(:,1);

58 spectra_backcor(:,k) = ...

59 (spectra_backcor(:,k)-min(spectra_backcor(:,k)));

60 else

61 spectra_backcor(:,k) = rec(:,k);

62 end

63 end

64 %% select range of interest

65 prompt = {'x1' 'x2'};

66 dlg_title = 'Range';

67 dims = [1 35];

68 defaultans = {'2800','3010'};

69 Answer = inputdlg(prompt,dlg_title,dims,defaultans);

70 x1 = str2double(Answer{1,1});

71 x2 = str2double(Answer{2,1});

72 xData.Raw = double(A.(fName).axisscale{2,1});

73 xRange = xData.Raw > x1 & xData.Raw < x2;

74 [row,col] = find(xRange);

75 xData.Indices = col;

76 %% Sum up selected region

77 yData.intensitiesCH = spectra_backcor(xData.Indices,:);

78 yData.sumCHvector = nansum(yData.intensitiesCH,1);

79 %% Additional Filter for Outliers

80 prompt = {'Threshold'};

81 dlg_title = 'Determine Outliers';

82 dims = [1 40];

83 defaultans = {'700'};

84 Answer = inputdlg(prompt,dlg_title,dims,defaultans);

85 threshold = str2double(Answer{1,1});

86 temp = 1;Outl = 1;

87 for k = 1:length(yData.sumCHvector)

88 if yData.sumCHvector(:,k)>threshold

89 yData.sumCHvector(:,k)= 0;

90 Outl(temp) = k;

91 temp=temp+1;

92 end

93 end
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94 clear temp

95 %create 3 dimensional array containing the summed up Intensities

96 %according the imageaxes

97 yData.sumCH = reshape(yData.sumCHvector,...

98 [size(ImageData.ySize,2),size(ImageData.xSize,2)]);

99

100 %% Check if Scan was stopped before finishing

101 %check if the mean intensity of all the lines is larger than 0.

102 %redefine image axes and reduce data set

103 for ind = 1:size(yData.sumCH,1)

104 if mean(yData.sumCH(ind,:),2)>0

105 CheckMapSz(ind) = 1;

106 else

107 CheckMapSz(ind) = 0;

108 end

109 end

110 %use the rows of the measured lines to redefine

111 %the variables ImageData.xSize and ImageData.ySize

112 [row,col] = find(CheckMapSz);

113 checkMapSz = isequal(size(row,2),size(ImageData.ySize,2));

114 if checkMapSz == 0

115 h_checkMap = msgbox('Dataset contains empty arrays.');

116 ReducedData = row;

117 ImageData.ySize = ImageData.ySize(row);

118 yData.sumCH = yData.sumCH(row,:);

119 %create a selection array also for the not yet reshaped data

120 %(yData.sumCHvector)

121 for ind = 1:size(yData.sumCHvector,2)

122 if yData.sumCHvector(1,ind)>0

123 CheckMapIntens(ind) = 1;

124 else

125 CheckMapIntens(ind) = 0;

126 end

127 end

128 [row,col] = find(CheckMapIntens);

129 yData.sumCHvector = yData.sumCHvector(:,col);

130 yData.sumCH = reshape(yData.sumCHvector,...

131 [size(ImageData.ySize,2),size(ImageData.xSize,2)]);

132 else

133 end

134 xImageSize = max(ImageData.xSize)+A.(fName).imageaxisscale{1,1}(1,2);

135 yImageSize = max(ImageData.ySize)+A.(fName).imageaxisscale{2,1}(1,2);

136 %subtract Minimum of the Intensities as Background

137 for m = 1:length(yData.sumCHvector)

138 yData.sumCHsubtractMinimum(m) = ...

139 (yData.sumCHvector(m)-min(yData.sumCHvector));

140 end

141 %Reduce the hyperspectral dataset to new size

142 yData.Orig = yData.Original(:,1:size(ImageData.ySize,2)...

143 ,1:size(ImageData.xSize,2));

144 yData.sumCH2 = reshape(yData.sumCHsubtractMinimum, ...

145 [size(ImageData.ySize,2),size(ImageData.xSize,2)]);

146 %% Data selection
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147 % extract the Spectra of the pixels, where

148 % Intens > c*std(Intens)

149 % while-loop for comparing resulting selection with intensity scaled image

150 %% Criterion dialog

151 CriterionAns = 1;

152 Crit = 3;

153 while CriterionAns == 1

154 yData.CriterionBasedSelection = find(yData.sumCHsubtractMinimum> ...

155 ((Crit)*std(yData.sumCHsubtractMinimum)));

156 %create the logical Matrix showing the position of the extracted

157 %Data as 1, the rest as 0

158 for k = 1:length(yData.sumCHvector)

159 if ismember(k,yData.CriterionBasedSelection)

160 yData.SelectionLogicalVector(1,k) = 1;

161 else

162 yData.SelectionLogicalVector(1,k) = 0;

163 end

164 end

165 %Collect all spectra of the selected pixels in yData.SelectionLogical

166 yData.SelectionLogical = reshape(yData.SelectionLogicalVector,...

167 [size(ImageData.ySize,2),size(ImageData.xSize,2)]);

168 RestSpect = find(yData.SelectionLogicalVector == 0);

169 %create a figure comparing the selected areas with the intensity-map

170 figTemp = figure;

171 ax1 = axes('Position',[0.1 0.1 .4 1]);

172 ax2 = axes('Position',[.55 0.1 .4 1]);

173 %plot the selected data logical matrix yData.SelectionLogical(NaN/1)

174 imagesc(ax1,ImageData.xSize,ImageData.ySize,yData.SelectionLogical);

175 shading flat;

176 % plot the intensity-map next to it

177 imagesc(ax2,ImageData.xSize,ImageData.ySize,yData.sumCH);

178 shading flat;

179 pbaspect(ax1,[length(ImageData.xSize) ...

180 length(ImageData.ySize) length(yData.sumCH)]);

181 pbaspect(ax2,[length(ImageData.xSize) ...

182 length(ImageData.ySize) length(yData.sumCH)]);

183 view(2);

184 %Check criterion

185 CriterionAnswer = questdlg(strcat ...

186 ('The criterion to select the spectra is currently: y > ',...

187 num2str(Crit),'x std(intensity). Shall it be changed?'));

188 if strcmp(CriterionAnswer,'Yes')

189 prompt = {'Multiplier for the std(intensity)'};

190 dlg_title = (strcat...

191 ('What shall be the new criterion (now:',...

192 num2str(Crit),'*std(intensity))'));

193 num_lines = 1;

194 defaultans = {'3'};

195 CritAns = inputdlg(prompt,dlg_title,num_lines,defaultans);

196 Crit = str2double(CritAns{1,1});

197 close(gcf);

198 else

199 close(gcf);
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200 CriterionAns = 0;

201 end

202 end

203 %% Data evaluation based on criterion

204 %in case outliers were set to 0, reset them to nan for averaging

205 if Outl ≠ 1

206 for n = 1:length(Outl)

207 spectra_backcor(:,Outl(n)) = nan;

208 end

209 end

210 Data.ExtrSpectra = spectra_backcor(:,yData.CriterionBasedSelection);

211 Data.RestSpectra = spectra_backcor(:,RestSpect);

212 %calculate the mean xData.Raw from those selected by the criterion

213 MRestSpect = nanmean(spectra_backcor(:,RestSpect),2);

214 MExtrSpec = nanmean(spectra_backcor(:,yData.CriterionBasedSelection),2);

215 %normalize to OH/CH-stretch

216 MExtrSpec = MExtrSpec*(max(MRestSpect)/max(MExtrSpec));

217 %subtract the mean background xData.Raw from the mean

218 PureSpec = MExtrSpec-MRestSpect-min(MExtrSpec-MRestSpect);

219 %Save number of spectra used for the Average xData.Raw in variable

220 %'numSpecs'

221 numSpecs = numel(yData.CriterionBasedSelection);

222 %%

223 % Intensity-map

224 fig_1 = figure;

225 h_map = imagesc(ImageData.xSize,ImageData.ySize,yData.sumCH);

226 pbaspect([length(ImageData.xSize) length(ImageData.ySize)...

227 length(yData.sumCH)]);

228 view(2);

229 title('Raman Map (based on intensity in region cm^-^1)');

230 xlabel('x [\mum]','interpreter','Tex');

231 ylabel('y [\mum]','interpreter','Tex');

232 zlabel('intensity / a.u.');

233 colormap(jet(300));shading flat;colorbar;

234 a=gca;a.FontName='Arial';a.FontSize=20;a.LineWidth=1.0;

235 fig_2 = figure;

236 h_fig2 = imagesc(ImageData.xSize,ImageData.ySize,yData.SelectionLogical);

237 shading flat;

238 pbaspect([length(ImageData.xSize) ...

239 length(ImageData.ySize) length(yData.sumCH)]);

240 view(2);

241 title('Datapoints taken for average spectrum')

242 xlabel('x [\mum]','interpreter','Tex');

243 ylabel('y [\mum]','interpreter','Tex');

244 zlabel('intensity/a.u.')

245 colormap(hot);a=gca;a.FontName='Arial';a.FontSize=20;a.LineWidth=1.0;

246 %plot mean xData.Raw of the extracted data

247 fig_3 = figure;

248 subplot(2,1,1);

249 plot(xData.Raw,MExtrSpec,xData.Raw,MRestSpect);

250 xlabel('wavenumber /cm^{-1}')

251 ylabel('intensity/a.u.')

252 legend('mean(cell spectrum)','mean(residue)','Location','best')
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253 a=gca;a.FontName='Arial';a.FontSize=20;a.LineWidth=1.0;a.XLim=[640 3100];

254 subplot(2,1,2);

255 plot(xData.Raw,PureSpec);

256 xlabel('wavenumber /cm^{-1}');ylabel('intensity / a.u.')

257 legend('Difference spectrum of cell and residue','Location','best')

258 a=gca;a.FontName='Arial';a.FontSize=20;a.LineWidth=1.0;a.XLim=[640 3100];

259 %% Loading Plot

260 Check data set again if any outliers remained and

261 colorize selected variance of interest

262 spectraBiplot=spectra_backcor;

263 spectraBiplot(isnan(spectraBiplot))= 0;

264 [coefs,score,¬,¬,explained,mu]=pca(spectraBiplot,'algorithm','svd');
265 prompt = {'x1' 'x2'};

266 dlg_title = 'Range';dims = [1 35];defaultans = {'2800','3010'};

267 Answer = inputdlg(prompt,dlg_title,dims,defaultans);

268 x1 = str2double(Answer{1,1});

269 x2 = str2double(Answer{2,1});

270 xData.Raw = double(A.(fName).axisscale{2,1});

271 xRange = xData.Raw > x1 & xData.Raw < x2;

272 class=xRange';

273 figure

274 Biplot = biplot(coefs(:,1:2),'Scores', score(:,1:2), ...

275 'ObsLabels', num2str(class),'markersize', 10);

276 for ii = size(Biplot,1)-size(spectra,1):size(Biplot,1)-1

277 userdata = get(Biplot(ii), 'UserData');

278 if ¬isempty(userdata)
279 if class(userdata) == 1

280 set(Biplot(ii), 'Color', 'm');

281 elseif class(userdata) == 0

282 set(Biplot(ii), 'Color', 'r');

283 end

284 else

285 set(Biplot(ii), 'Color', 'b');

286 end

287 end

288 a=gca;a.FontName='Arial';a.FontSize=16;a.LineWidth=1.0;

MATLAB script used for background correction:

1 function [z,a,it,ord,s,fct] = backcor(n,y,ord,s,fct)

2 % BACKCOR Background estimation by minimizing a non-quadratic cost function.

3 %

4 % [EST,COEFS,IT] = BACKCOR(N,Y,ORDER,THRESHOLD,FUNCTION) computes and estimation EST

5 % of the background (aka. baseline) in a spectroscopic signal Y with wavelength N.

6 % The background is estimated by a polynomial with order ORDER using a cost-function

7 % FUNCTION with parameter THRESHOLD. FUNCTION can have the four following values:

8 % 'sh' - symmetric Huber function : f(x) = { x^2 if abs(x) < THRESHOLD,

9 % { 2*THRESHOLD*abs(x)-THRESHOLD^2 otherwise.

10 % 'ah' - asymmetric Huber function : f(x) = { x^2 if x < THRESHOLD,

11 % { 2*THRESHOLD*x-THRESHOLD^2 otherwise.
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12 % 'stq' - symmetric truncated quadratic : f(x) = { x^2 if abs(x) < THRESHOLD,

13 % { THRESHOLD^2 otherwise.

14 % 'atq' - asymmetric truncated quadratic : f(x) = { x^2 if x < THRESHOLD,

15 % { THRESHOLD^2 otherwise.

16 % COEFS returns the ORDER+1 vector of the estimated polynomial coefficients

17 % (computed with n sorted and bounded in [-1,1] and y bounded in [0,1]).

18 % IT returns the number of iterations.

19

20 % Rescaling

21 N = length(n);

22 [n,i] = sort(n);

23 y = y(i);

24 maxy = max(y);

25 dely = (maxy-min(y))/2;

26 n = 2 * (n(:)-n(N)) / (n(N)-n(1)) + 1;

27 y = (y(:)-maxy)/dely + 1;

28 % Vandermonde matrix

29 p = 0:ord;

30 T = repmat(n,1,ord+1) .^ repmat(p,N,1);

31 Tinv = pinv(T'*T) * T';

32 % Initialisation (least-squares estimation)

33 a = Tinv*y;

34 z = T*a;

35 % Other variables

36 alpha = 0.99 * 1/2; % Scale parameter alpha

37 it = 0; % Iteration number

38 zp = ones(N,1); % Previous estimation

39 % LEGEND

40 while sum((z-zp).^2)/sum(zp.^2) > 1e-9,

41

42 it = it + 1; % Iteration number

43 zp = z; % Previous estimation

44 res = y - z; % Residual

45 % Estimate d

46 if isequal(fct,'sh'),

47 d = (res*(2*alpha-1)) .* (abs(res)<s) + (-alpha*2*s-res) .* (res≤-s) +...

48 (alpha*2*s-res) .* (res≥s);

49 elseif isequal(fct,'ah'),

50 d = (res*(2*alpha-1)) .* (res<s) + (alpha*2*s-res) .* (res≥s);

51 elseif isequal(fct,'stq'),

52 d = (res*(2*alpha-1)) .* (abs(res)<s) - res .* (abs(res)≥s);

53 elseif isequal(fct,'atq'),

54 d = (res*(2*alpha-1)) .* (res<s) - res .* (res≥s);

55 end;

56 % Estimate z

57 a = Tinv * (y+d); % Polynomial coefficients a

58 z = T*a; % Polynomial

59 end;

60 % Rescaling

61 [¬,j] = sort(i);

62 z = (z(j)-1)*dely + maxy;

63

64 a(1) = a(1)-1;
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65 a = a*dely;% + maxy;

66 end

MATLAB script used for simulations and analysis comparison:

1 H = waitbar(0,'computing...');

2 for i=1:numel(conc_factor)

3 for j=1:numel(noise_factor)

4 for k=1:iterations

5 % Generate new spectrum for each iteration and calculate SNR

6 for l=1:spectra+1

7 mixture(:,l) = a*conc_factor(i)+b+c+d+e+f+g+x+y+z...

8 +randn(size(a,1),1)*noise_factor(j);

9 end

10 % Calculate SNR

11 SNRinf = a(2300:4100)*conc_factor(i)+z(2300:4100);

12 noise=randn(size(z(2300:4100)))*noise_factor(j);

13 SNR(k) = var(SNRinf-mean(SNRinf))/var(noise-mean(noise));

14 % Principle Component Analysis

15 [coefs,score,¬,¬,explained,mu]=pca(mixture,'algorithm','svd');
16 while sum(explained(1:rank,:))<perc

17 rank = rank + 1;

18 end

19 rec_complete= score(:,1:rank) * coefs(:,1:rank)' + mu;

20 pca_decomp=[a+randn(size(a,1),1)*noise_ref,...

21 b+randn(size(a,1),1)*noise_ref,c+randn(size(a,1),1)...

22 *noise_ref,d+randn(size(a,1),1)*noise_ref,...

23 e+randn(size(a,1),1)*noise_ref,f+randn(size(a,1),1)...

24 *noise_ref,g+randn(size(a,1),1)*noise_ref, ...

25 x+randn(size(a,1),1)*noise_ref,y+randn(size(a,1),1)...

26 *noise_ref,z+randn(size(a,1),1)...

27 *noise_ref]\rec_complete(:,1);

28 temp(:,k)= [pca_decomp(1,1)/conc_factor(i),pca_decomp(2,1),...

29 pca_decomp(3,1),pca_decomp(4,1),pca_decomp(5,1),...

30 pca_decomp(6,1),pca_decomp(7,1),pca_decomp(8,1),...

31 pca_decomp(9,1),pca_decomp(10,1)];

32 lindecomp = [a+randn(size(a,1),1)*noise_ref,...

33 b+randn(size(a,1),1)*noise_ref,c+randn(size(a,1),1)...

34 *noise_ref,d+randn(size(a,1),1)*noise_ref,...

35 e+randn(size(a,1),1)*noise_ref,f+randn(size(a,1),1),...

36 g+randn(size(a,1),1)*noise_ref, ...

37 x+randn(size(a,1),1)*noise_ref,y+randn(size(a,1),1)...

38 *noise_ref,z+randn(size(a,1),1)*noise_ref]\mixture(:,1);

39 temp2(:,k) = [lindecomp(1,1)/conc_factor(i),lindecomp(2,1),...

40 lindecomp(3,1),lindecomp(4,1),lindecomp(5,1),...

41 lindecomp(6,1),lindecomp(7,1),lindecomp(8,1),...

42 lindecomp(9,1),lindecomp(10,1)];

43 perc=(i+(i-1)*numel(noise_factor)*iterations+(j-1)...

44 *iterations+k)/(iterations*numel(noise_factor)...

45 *numel(conc_factor));
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46 waitbar(perc,H);

47 end

48 loopednoise_pca(j,1:5) = [round(mean(SNR),1) mean(temp(1,:),2)...

49 mean(temp(2,:),2) std(temp(1,:),0,2) std(temp(2,:),0,2)];

50 loopednoise_linDecomp(j,1:5) = [round(mean(SNR),1)...

51 mean(temp2(1,:),2) mean(temp2(2,:),2) std(temp2(1,:),0,2)...

52 std(temp2(2,:),0,2)];

53 end

54 overall_pca(i,1:2) = {conc_factor(i);loopednoise_pca};

55 overall_linDecomp(i,1:2) = {conc_factor(i);loopednoise_linDecomp};

56 end

87


	Contents
	Introduction
	Theory
	Fluorescence
	Overview of Absorption and Emission Processes
	The Franck-Condon principle and Stokes shift
	Quantum yield and fluorescence lifetime

	Two-Photon Absorption
	Raman Spectroscopy
	Scattering processes
	Classical description of Raman scattering
	Experimental dependencies

	Confocal Microscopy
	Resolution
	Confocal microscope setup
	Fluorescence Correlation Spectroscopy

	Data Analysis
	Linear Decomposition
	Principle Component Analysis (PCA)


	Methods
	Description of the home-built setup
	Characterization of the home-built microscope setup
	Raman Setups
	Raman spectroscopy in liquid phase
	Raman spectroscopy in solid phase
	Confocal Raman imaging of living cells

	Data Analysis and Simulation
	Estimation of the detection limit
	Live cell data

	Cell Culture

	Results and Discussion
	Characterization of the combined one- and two-photon microscope
	Characterization via FCS
	Characterization via scanning images

	Raman measurements and simulations
	Raman spectra
	Estimation of the detection limit
	Live Cell Measurements


	Conclusion and Outlook
	List of Figures
	List of Tables
	Abbreviations
	Appendix

