blank LMU Munich Faculty for Chemistry and Pharmacy

Gaussian Output Files

he first part of the Gaussian output file states in considerable detail the contents of the license agreement. This should be taken seriously. Gaussian 03 is no public domain software!!

 Entering Gaussian System, Link 0=/scr1/g03/g03
 Initial command:
 /scr1/g03/l1.exe /scr1/zipse/Gau-26301.inp -scrdir=/scr1/zipse/
 Entering Link 1 = /scr1/g03/l1.exe PID=     26302.

 Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc.
                  All Rights Reserved.

 This is the Gaussian(R) 03 program.  It is based on the
 the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
 the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
 the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
 the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
 the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
 the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
 University), and the Gaussian 82(TM) system (copyright 1983,
 Carnegie Mellon University). Gaussian is a federally registered
 trademark of Gaussian, Inc.

 This software contains proprietary and confidential information,
 including trade secrets, belonging to Gaussian, Inc.

 This software is provided under written license and may be
 used, copied, transmitted, or stored only in accord with that
 written license.

 The following legend is applicable only to US Government
 contracts under DFARS:

                    RESTRICTED RIGHTS LEGEND

 Use, duplication or disclosure by the US Government is subject
 to restrictions as set forth in subparagraph (c)(1)(ii) of the
 Rights in Technical Data and Computer Software clause at DFARS

 Gaussian, Inc.
 Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

 The following legend is applicable only to US Government
 contracts under FAR:

                    RESTRICTED RIGHTS LEGEND

 Use, reproduction and disclosure by the US Government is subject
 to restrictions as set forth in subparagraph (c) of the
 Commercial Computer Software - Restricted Rights clause at FAR

 Gaussian, Inc.
 Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

 Warning -- This program may not be used in any manner that
 competes with the business of Gaussian, Inc. or will provide
 assistance to any competitor of Gaussian, Inc.  The licensee
 of this program is prohibited from giving any competitor of
 Gaussian, Inc. access to this program.  By using this program,
 the user acknowledges that Gaussian, Inc. is engaged in the
 business of creating and licensing software in the field of
 computational chemistry and represents and warrants to the
 licensee that it is not a competitor of Gaussian, Inc. and that
 it will not use this program in any manner prohibited above.

 Cite this work as:
 Gaussian 03, Revision B.03,
 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
 K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
 V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
 G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
 R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
 H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
 C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
 A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
 K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
 V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
 O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
 J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
 J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
 I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
 C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
 B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,
 Gaussian, Inc., Pittsburgh PA, 2003.

Actual program output specific to a certain calculation starts with a statement of the program version, Gaussian revision (here B.03), system software (here LINUX), and the current date. Subsequently the keywords used in the input file are repeated together with other general settings such as the amount of main memory needed for the calculations (here 48MB), and the location of a binary checkpoint file for storage of important results (here /scratch/test1.chk). The "scf=tight" keyword used here specifies tight criteria for the energy calculation and the quantum mechanical method used is "HF/6-31G(d)".

 Gaussian 03:  x86-Linux-G03RevB.03 4-May-2003
 #P HF/6-31G(d) scf=tight

The keywords are transformed by Gaussian into a sequence of subroutine calls termed "links". The links are given together with the corresponding options set for each link in a proprietary format. Provided that the "#P" option is used in the input file, Gaussian prints out elapsed CPU times after leaving a link.

 Leave Link    1 at Mon Oct 18 10:33:45 2004, MaxMem=    6000000 cpu:       0.4

In link101 the program reads in or retrieves from the checkpoint file the structure of the system together with other parameters and prints the structure (in a slightly modified format) together with overall charge and spin multiplicity and the comments supplied in the input file. It is good practice to include the name of the input file in the comments of the job. The system chosen here is formaldehyde in its electronic ground state.

 (Enter /scr1/g03/l101.exe)
 test1 HF/6-31G(d) sp formaldehyde
 Symbolic Z-matrix:
 Charge =  0 Multiplicity = 1
 O2                   1    r2
 H3                   1    r3       2    a3
 H4                   1    r4       2    a4       3    d4       0
  r2                    1.2
  r3                    1.
  r4                    1.
  a3                  120.
  a4                  120.
  d4                  180.

                    Isotopes and Nuclear Properties:

  Atom         1           2           3           4
 IAtWgt=          12          16           1           1
 AtmWgt=  12.0000000  15.9949146   1.0078250   1.0078250
 IAtSpn=           0           0           1           1
 AtZEff=   0.0000000   0.0000000   0.0000000   0.0000000
 AtQMom=   0.0000000   0.0000000   0.0000000   0.0000000
 AtGFac=   0.0000000   0.0000000   2.7928460   2.7928460
 Leave Link  101 at Mon Oct 18 10:33:46 2004, MaxMem=    6000000 cpu:       0.3

Link202 determines, among others, the symmetry of the system, decides on the symmetry properties that will be used in the actual quantum mechanical calculations and rotates the molecule such that the center of mass is located in the origin of the cartesian coordinate system, the principal axis (so it exists) points along the z-axis, and the principal plane of symmetry (so it exists) is located in the yz-plane. The resulting orientation is printed as "Standard orientation", which serves as the reference description for all information regarding the wavefunction and first and second derivatives of the energy with respect to structural parameters.

 (Enter /scr1/g03/l202.exe)
                          Input orientation:
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
    1          6             0        0.000000    0.000000    0.000000
    2          8             0        0.000000    0.000000    1.200000
    3          1             0        0.866025    0.000000   -0.500000
    4          1             0       -0.866025    0.000000   -0.500000
                    Distance matrix (angstroms):
                    1          2          3          4
     1  C    0.000000
     2  O    1.200000   0.000000
     3  H    1.000000   1.907878   0.000000
     4  H    1.000000   1.907878   1.732051   0.000000
 Stoichiometry    CH2O
 Framework group  C2V[C2(CO),SGV(H2)]
 Deg. of freedom     3
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
    1          6             0        0.000000    0.000000   -0.537500
    2          8             0        0.000000    0.000000    0.662500
    3          1             0        0.000000    0.866025   -1.037500
    4          1             0        0.000000   -0.866025   -1.037500
 Rotational constants (GHZ):    334.3034006     40.3785408     36.0270459
 Leave Link  202 at Mon Oct 18 10:33:47 2004, MaxMem=    6000000 cpu:       0.3

link301 loads all components necessary for the actual quantum mechanical part of the calculation.

 (Enter /scr1/g03/l301.exe)
 Standard basis: 6-31G(d) (6D, 7F)
 There are    18 symmetry adapted basis functions of A1  symmetry.
 There are     2 symmetry adapted basis functions of A2  symmetry.
 There are     6 symmetry adapted basis functions of B1  symmetry.
 There are     8 symmetry adapted basis functions of B2  symmetry.
 Integral buffers will be    262144 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
    34 basis functions,    64 primitive gaussians,    34 cartesian basis functions
     8 alpha electrons        8 beta electrons
       nuclear repulsion energy        32.2605629825 Hartrees.
 IExCor=   0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX=  1.000000
 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0
 NAtoms=    4 NActive=    4 NUniq=    3 SFac= 2.05D+00 NAtFMM=   60 Big=F
 Leave Link  301 at Mon Oct 18 10:33:49 2004, MaxMem=    6000000 cpu:       0.1

link303 calculates a number of integrals necessary for the subsequent SCF (energy) calculation.

 (Enter /scr1/g03/l302.exe)
 NPDir=0 NMtPBC=     1 NCelOv=     1 NCel=       1 NClECP=     1 NCelD=      1
         NCelK=      1 NCelE2=     1 NClLst=     1 CellRange=     0.0.
 One-electron integrals computed using PRISM.
 One-electron integral symmetry used in STVInt
 NBasis=    34 RedAO= T  NBF=    18     2     6     8
 NBsUse=    34 1.00D-06 NBFU=    18     2     6     8
 Leave Link  302 at Mon Oct 18 10:33:50 2004, MaxMem=    6000000 cpu:       0.8
 (Enter /scr1/g03/l303.exe)
 DipDrv:  MaxL=1.
 Leave Link  303 at Mon Oct 18 10:33:51 2004, MaxMem=    6000000 cpu:       0.0

Before the actual energy calculation is performed, a guess for the wavefunction is obtained using either the Hueckel, the INDO, or the Harris functional method. Alternatively, a guess can also be read from the checkpoint or the input file.

 (Enter /scr1/g03/l401.exe)
 Harris functional with IExCor=  205 diagonalized for initial guess.
 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=1 IRadAn=         1 AccDes= 1.00D-06
 HarFok:  IExCor= 205 AccDes= 1.00D-06 IRadAn=         1 IDoV=1
 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 Harris En= -113.945080996335
 Initial guess orbital symmetries:
       Occupied  (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2)
       Virtual   (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (B2)
                 (B1) (A1) (B2) (A1) (A2) (B1) (A1) (A2) (B2) (A1)
                 (A1) (B1) (B2) (A1) (A1) (A1)
 The electronic state of the initial guess is 1-A1.
 Leave Link  401 at Mon Oct 18 10:33:52 2004, MaxMem=    6000000 cpu:       0.3

Calculation of the HF/6-31G(d) energy of the system is done in link 502. Some parameters such as the currently selected convergence criteria are listed first. The final SCF energy given as E(RHF) = -113.852967419 is the energy of the system with respect to its nuclei and electrons at infinite separation. The energy is given in atomic units (Hartree).

 (Enter /scr1/g03/l502.exe)
 Closed shell SCF:
 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Requested convergence on             energy=1.00D-06.
 No special actions if energy rises.
 Using DIIS extrapolation, IDIIS=  1040.
 Integral symmetry usage will be decided dynamically.
 Keep R1 integrals in memory in canonical form, NReq=      649414.
 IEnd=     21265 IEndB=     21265 NGot=   6000000 MDV=   5819242
 LenX=   5819242
 Symmetry not used in FoFDir.
 MinBra= 0 MaxBra= 2 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.

 Cycle   1  Pass 1  IDiag  1:
 E= -113.781069939217
 DIIS: error= 5.84D-02 at cycle   1 NSaved=   1.
 NSaved= 1 IEnMin= 1 EnMin= -113.781069939217     IErMin= 1 ErrMin= 5.84D-02
 ErrMax= 5.84D-02 EMaxC= 1.00D-01 BMatC= 1.25D-01 BMatP= 1.25D-01
 IDIUse=3 WtCom= 4.16D-01 WtEn= 5.84D-01
 Coeff-Com:  0.100D+01
 Coeff-En:   0.100D+01
 Coeff:      0.100D+01
 Gap=     0.589 Goal=   None    Shift=    0.000
 GapD=    0.589 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
 RMSDP=8.47D-03 MaxDP=8.79D-02              OVMax= 1.03D-01

 Cycle   2  Pass 1  IDiag  1:
 E= -113.841049890726     Delta-E=       -0.059979951509 Rises=F Damp=F
 DIIS: error= 2.21D-02 at cycle   2 NSaved=   2.
 NSaved= 2 IEnMin= 2 EnMin= -113.841049890726     IErMin= 2 ErrMin= 2.21D-02
 ErrMax= 2.21D-02 EMaxC= 1.00D-01 BMatC= 1.76D-02 BMatP= 1.25D-01
 IDIUse=3 WtCom= 7.79D-01 WtEn= 2.21D-01
 Coeff-Com:  0.200D+00 0.800D+00
 Coeff-En:   0.000D+00 0.100D+01
 Coeff:      0.156D+00 0.844D+00
 Gap=     0.607 Goal=   None    Shift=    0.000
 RMSDP=3.85D-03 MaxDP=4.13D-02 DE=-6.00D-02 OVMax= 4.74D-02

 Cycle   3  Pass 1  IDiag  1:
 E= -113.850643979636     Delta-E=       -0.009594088910 Rises=F Damp=F
 DIIS: error= 1.06D-02 at cycle   3 NSaved=   3.
 NSaved= 3 IEnMin= 3 EnMin= -113.850643979636     IErMin= 3 ErrMin= 1.06D-02
 ErrMax= 1.06D-02 EMaxC= 1.00D-01 BMatC= 3.26D-03 BMatP= 1.76D-02
 IDIUse=3 WtCom= 8.94D-01 WtEn= 1.06D-01
 Coeff-Com: -0.129D-01 0.280D+00 0.733D+00
 Coeff-En:   0.000D+00 0.000D+00 0.100D+01
 Coeff:     -0.115D-01 0.250D+00 0.761D+00
 Gap=     0.582 Goal=   None    Shift=    0.000
 RMSDP=1.12D-03 MaxDP=1.57D-02 DE=-9.59D-03 OVMax= 2.18D-02

 Cycle   4  Pass 1  IDiag  1:
 E= -113.852856198637     Delta-E=       -0.002212219000 Rises=F Damp=F
 DIIS: error= 1.79D-03 at cycle   4 NSaved=   4.
 NSaved= 4 IEnMin= 4 EnMin= -113.852856198637     IErMin= 4 ErrMin= 1.79D-03
 ErrMax= 1.79D-03 EMaxC= 1.00D-01 BMatC= 1.39D-04 BMatP= 3.26D-03
 IDIUse=3 WtCom= 9.82D-01 WtEn= 1.79D-02
 Coeff-Com: -0.818D-02 0.238D-01 0.213D+00 0.772D+00
 Coeff-En:   0.000D+00 0.000D+00 0.000D+00 0.100D+01
 Coeff:     -0.804D-02 0.234D-01 0.209D+00 0.776D+00
 Gap=     0.586 Goal=   None    Shift=    0.000
 RMSDP=2.68D-04 MaxDP=2.12D-03 DE=-2.21D-03 OVMax= 2.76D-03

 Cycle   5  Pass 1  IDiag  1:
 E= -113.852962653727     Delta-E=       -0.000106455090 Rises=F Damp=F
 DIIS: error= 3.38D-04 at cycle   5 NSaved=   5.
 NSaved= 5 IEnMin= 5 EnMin= -113.852962653727     IErMin= 5 ErrMin= 3.38D-04
 ErrMax= 3.38D-04 EMaxC= 1.00D-01 BMatC= 1.71D-06 BMatP= 1.39D-04
 IDIUse=3 WtCom= 9.97D-01 WtEn= 3.38D-03
 Coeff-Com:  0.199D-02-0.160D-01-0.697D-01-0.163D+00 0.125D+01
 Coeff-En:   0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.100D+01
 Coeff:      0.199D-02-0.159D-01-0.695D-01-0.163D+00 0.125D+01
 Gap=     0.586 Goal=   None    Shift=    0.000
 RMSDP=7.85D-05 MaxDP=8.34D-04 DE=-1.06D-04 OVMax= 1.16D-03

 Cycle   6  Pass 1  IDiag  1:
 E= -113.852966770687     Delta-E=       -0.000004116960 Rises=F Damp=F
 DIIS: error= 7.67D-05 at cycle   6 NSaved=   6.
 NSaved= 6 IEnMin= 6 EnMin= -113.852966770687     IErMin= 6 ErrMin= 7.67D-05
 ErrMax= 7.67D-05 EMaxC= 1.00D-01 BMatC= 2.30D-07 BMatP= 1.71D-06
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: -0.395D-03 0.445D-02 0.188D-01 0.567D-02-0.417D+00 0.139D+01
 Coeff:     -0.395D-03 0.445D-02 0.188D-01 0.567D-02-0.417D+00 0.139D+01
 Gap=     0.587 Goal=   None    Shift=    0.000
 RMSDP=2.96D-05 MaxDP=2.63D-04 DE=-4.12D-06 OVMax= 4.74D-04

 Cycle   7  Pass 1  IDiag  1:
 E= -113.852967348217     Delta-E=       -0.000000577530 Rises=F Damp=F
 DIIS: error= 3.13D-05 at cycle   7 NSaved=   7.
 NSaved= 7 IEnMin= 7 EnMin= -113.852967348217     IErMin= 7 ErrMin= 3.13D-05
 ErrMax= 3.13D-05 EMaxC= 1.00D-01 BMatC= 2.55D-08 BMatP= 2.30D-07
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: -0.448D-04-0.727D-04 0.683D-03 0.670D-02 0.565D-01-0.617D+00
 Coeff-Com:  0.155D+01
 Coeff:     -0.448D-04-0.727D-04 0.683D-03 0.670D-02 0.565D-01-0.617D+00
 Coeff:      0.155D+01
 Gap=     0.587 Goal=   None    Shift=    0.000
 RMSDP=1.27D-05 MaxDP=1.01D-04 DE=-5.78D-07 OVMax= 2.15D-04

 Cycle   8  Pass 1  IDiag  1:
 E= -113.852967418073     Delta-E=       -0.000000069856 Rises=F Damp=F
 DIIS: error= 5.85D-06 at cycle   8 NSaved=   8.
 NSaved= 8 IEnMin= 8 EnMin= -113.852967418073     IErMin= 8 ErrMin= 5.85D-06
 ErrMax= 5.85D-06 EMaxC= 1.00D-01 BMatC= 5.15D-10 BMatP= 2.55D-08
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com:  0.349D-04-0.217D-03-0.113D-02-0.372D-02 0.333D-03 0.173D+00
 Coeff-Com: -0.595D+00 0.143D+01
 Coeff:      0.349D-04-0.217D-03-0.113D-02-0.372D-02 0.333D-03 0.173D+00
 Coeff:     -0.595D+00 0.143D+01
 Gap=     0.587 Goal=   None    Shift=    0.000
 RMSDP=1.66D-06 MaxDP=1.36D-05 DE=-6.99D-08 OVMax= 2.25D-05

 Cycle   9  Pass 1  IDiag  1:
 E= -113.852967419256     Delta-E=       -0.000000001183 Rises=F Damp=F
 DIIS: error= 7.58D-07 at cycle   9 NSaved=   9.
 NSaved= 9 IEnMin= 9 EnMin= -113.852967419256     IErMin= 9 ErrMin= 7.58D-07
 ErrMax= 7.58D-07 EMaxC= 1.00D-01 BMatC= 8.31D-12 BMatP= 5.15D-10
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: -0.103D-04 0.745D-04 0.377D-03 0.958D-03-0.247D-02-0.331D-01
 Coeff-Com:  0.135D+00-0.421D+00 0.132D+01
 Coeff:     -0.103D-04 0.745D-04 0.377D-03 0.958D-03-0.247D-02-0.331D-01
 Coeff:      0.135D+00-0.421D+00 0.132D+01
 Gap=     0.587 Goal=   None    Shift=    0.000
 RMSDP=2.03D-07 MaxDP=2.00D-06 DE=-1.18D-09 OVMax= 2.16D-06

 Cycle  10  Pass 1  IDiag  1:
 E= -113.852967419271     Delta-E=       -0.000000000015 Rises=F Damp=F
 DIIS: error= 5.37D-08 at cycle  10 NSaved=  10.
 NSaved=10 IEnMin=10 EnMin= -113.852967419271     IErMin=10 ErrMin= 5.37D-08
 ErrMax= 5.37D-08 EMaxC= 1.00D-01 BMatC= 1.33D-13 BMatP= 8.31D-12
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com:  0.116D-05-0.940D-05-0.470D-04-0.860D-04 0.496D-03 0.220D-02
 Coeff-Com: -0.116D-01 0.478D-01-0.259D+00 0.122D+01
 Coeff:      0.116D-05-0.940D-05-0.470D-04-0.860D-04 0.496D-03 0.220D-02
 Coeff:     -0.116D-01 0.478D-01-0.259D+00 0.122D+01
 Gap=     0.587 Goal=   None    Shift=    0.000
 RMSDP=3.37D-08 MaxDP=2.97D-07 DE=-1.51D-11 OVMax= 2.66D-07

 Cycle  11  Pass 1  IDiag  1:
 E= -113.852967419271     Delta-E=        0.000000000000 Rises=F Damp=F
 DIIS: error= 9.48D-09 at cycle  11 NSaved=  11.
 NSaved=11 IEnMin=11 EnMin= -113.852967419271     IErMin=11 ErrMin= 9.48D-09
 ErrMax= 9.48D-09 EMaxC= 1.00D-01 BMatC= 2.20D-15 BMatP= 1.33D-13
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: -0.890D-07 0.758D-06 0.434D-05 0.380D-05-0.669D-04 0.126D-04
 Coeff-Com:  0.406D-03-0.338D-02 0.292D-01-0.218D+00 0.119D+01
 Coeff:     -0.890D-07 0.758D-06 0.434D-05 0.380D-05-0.669D-04 0.126D-04
 Coeff:      0.406D-03-0.338D-02 0.292D-01-0.218D+00 0.119D+01
 Gap=     0.587 Goal=   None    Shift=    0.000
 RMSDP=2.65D-09 MaxDP=2.21D-08 DE=-2.27D-13 OVMax= 2.68D-08

 SCF Done:  E(RHF) =  -113.852967419     A.U. after   11 cycles
             Convg  =    0.2649D-08             -V/T =  1.9997
             S**2   =   0.0000
 KE= 1.138889777761D+02 PE=-3.330532989848D+02 EE= 7.305079080697D+01
 Leave Link  502 at Mon Oct 18 10:33:58 2004, MaxMem=    6000000 cpu:       1.1

Selected information on the optimized wavefunction is printed along with a Mulliken population analysis in link601.

 (Enter /scr1/g03/l601.exe)
 Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0.


            Population analysis using the SCF density.


 Orbital symmetries:
       Occupied  (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2)
       Virtual   (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (B2)
                 (A1) (B1) (B2) (A1) (A2) (B1) (A1) (A2) (B2) (A1)
                 (A1) (B1) (B2) (A1) (A1) (A1)
 The electronic state is 1-A1.
 Alpha  occ. eigenvalues --  -20.57603 -11.31546  -1.40250  -0.89790  -0.72365
 Alpha  occ. eigenvalues --   -0.64488  -0.52755  -0.44339
 Alpha virt. eigenvalues --    0.14325   0.27254   0.34861   0.37647   0.73913
 Alpha virt. eigenvalues --    0.80034   0.82453   0.97649   1.10532   1.18714
 Alpha virt. eigenvalues --    1.22933   1.27415   1.33708   1.62596   1.76972
 Alpha virt. eigenvalues --    1.80651   2.00802   2.24294   2.28103   2.51332
 Alpha virt. eigenvalues --    2.70989   2.89384   3.04381   3.30687   4.11684
 Alpha virt. eigenvalues --    4.52410
          Condensed to atoms (all electrons):
              1          2          3          4
     1  C    4.535451   0.545272   0.388868   0.388868
     2  O    0.545272   8.013683  -0.057728  -0.057728
     3  H    0.388868  -0.057728   0.597808  -0.079928
     4  H    0.388868  -0.057728  -0.079928   0.597808
 Mulliken atomic charges:
     1  C    0.141540
     2  O   -0.443500
     3  H    0.150980
     4  H    0.150980
 Sum of Mulliken charges=   0.00000
 Atomic charges with hydrogens summed into heavy atoms:
     1  C    0.443500
     2  O   -0.443500
     3  H    0.000000
     4  H    0.000000
 Sum of Mulliken charges=   0.00000
 Electronic spatial extent (au):  =    57.2540
 Charge=     0.0000 electrons
 Dipole moment (field-independent basis, Debye):
    X=     0.0000    Y=     0.0000    Z=    -2.8199  Tot=     2.8199
 Quadrupole moment (field-independent basis, Debye-Ang):
   XX=   -11.2700   YY=   -11.2435   ZZ=   -11.7586
   XY=     0.0000   XZ=     0.0000   YZ=     0.0000
 Traceless Quadrupole moment (field-independent basis, Debye-Ang):
   XX=     0.1540   YY=     0.1805   ZZ=    -0.3346
   XY=     0.0000   XZ=     0.0000   YZ=     0.0000
 Octapole moment (field-independent basis, Debye-Ang**2):
  XXX=     0.0000  YYY=     0.0000  ZZZ=    -0.2636  XYY=     0.0000
  XXY=     0.0000  XXZ=     0.3457  XZZ=     0.0000  YZZ=     0.0000
  YYZ=    -0.4711  XYZ=     0.0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
 XXXX=    -9.0469 YYYY=   -15.1879 ZZZZ=   -40.7625 XXXY=     0.0000
 XXXZ=     0.0000 YYYX=     0.0000 YYYZ=     0.0000 ZZZX=     0.0000
 ZZZY=     0.0000 XXYY=    -4.2304 XXZZ=    -8.2015 YYZZ=    -9.1659
 XXYZ=     0.0000 YYXZ=     0.0000 ZZXY=     0.0000
 N-N= 3.226056298246D+01 E-N=-3.330532990315D+02  KE= 1.138889777761D+02
 Symmetry A1   KE= 1.035048839320D+02
 Symmetry A2   KE= 1.383951977151D-34
 Symmetry B1   KE= 3.440292093306D+00
 Symmetry B2   KE= 6.943801750813D+00
 No NMR shielding tensors so no spin-rotation constants.
 Leave Link  601 at Mon Oct 18 10:34:00 2004, MaxMem=    6000000 cpu:       1.1

At the very end of each Gaussian calculation, an archive entry in a very compact format is printed to summarize the results. This archive entry is frequently used as supplemental material in publications of theoretical results.

 (Enter /scr1/g03/l9999.exe)
 1\1\GINC-TERMINUS\SP\RHF\6-31G(d)\C1H2O1\ZIPSE\18-Oct-2004\0\\#P HF/6-
 31G(D) SCF=TIGHT\\test1 HF/6-31G(d) sp formaldehyde\\0,1\C\O,1,1.2\H,1
 1-A1\HF=-113.8529674\RMSD=2.649e-09\Dipole=0.,0.,-1.1094497\PG=C02V [C

From a database of citations, Gaussian prints one entry together with some timing information.

 Job cpu time:  0 days  0 hours  0 minutes  9.3 seconds.
 File lengths (MBytes):  RWF=     11 Int=      0 D2E=      0 Chk=      7 Scr=      1
 Normal termination of Gaussian 03 at Mon Oct 18 10:34:16 2004.