Fakultät für Chemie und Pharmazie

Optische Schalter - Chilischärfe mit Lichtsteuerung

Photo: Daniel Risacher / wikimedia.org

Schmerzrezeptoren reagieren auf Chilischärfe, aber auch auf zahlreiche andere Reize. Nun gelang es LMU-Wissenschaftlern, ein Gegenmittel gegen Chilischärfe in einen Lichtrezeptor zu verwandeln, mit dem verschiedene Schmerzreize separat gesteuert werden können. Ein herzhafter Biss in eine Chilischote bringt den Mund gefühlt zum Brennen – und zwar, weil der Schärfebestandteil in Chili, das Capsaicin, auf einen Rezeptor wirkt, der auch durch Hitze stimuliert wird: Der sogenannte „Transient Receptor Potential Vanilloid 1“ (TRPV1) wird hauptsächlich in schmerzwahrnehmenden Nervenzellen gebildet und von mehreren chemischen und physikalischen Reizen aktiviert – neben Capsaicin und Hitze unter anderem auch durch elektrische Spannung, Spinnengifte und niedrige pH-Werte.

 

TRPV1 gehört zu einer der größten Ionenkanalfamilien, die als vielseitige zelluläre Sensoren eine zentrale Rolle in der Sinnesphysiologie wahrnehmen. „TRP-Kanäle sind auch in Sehprozesse involviert und möglicherweise für die Regulation des Tag- und Nachtrhythmus in Säugetieren verantwortlich. Trotz seiner vielfältigen Aktivierungsmechanismen reagiert TRPV1 allerdings von Natur aus nicht auf Licht“, sagt Dirk Trauner, Professor für Chemische Biologie und Genetik an der LMU und Mitglied des Exzellenzclusters „Center for Integrated Protein Science Munich“ (CIPSM).

Schärfehemmer wird künstlicher Lichtrezeptor

Trauner ist Spezialist dafür, Moleküle mit einem chemischen Schalter zu versehen, der auf Licht reagiert. Nun gelang es Trauners Team in Zusammenarbeit mit der Arbeitsgruppe von Professor Thomas Gudermann (Walther-Straub-Institut für Pharmakologie und Toxikologie), zum ersten Mal auch TRPV1 durch Licht steuerbar zu machen – und zwar mithilfe von Capsazepin, das als kompetitiver Inhibitor den Effekt von Capsaicin auf den TRPV1-Kanal blockiert. „Wir haben TRPV1-Kanäle durch den Einsatz eines photoschaltbaren Capsazepin-Derivats in einen künstlichen Lichtrezeptor verwandelt“, sagt Marco Stein, der Erstautor der neuen Studie.

Die Wissenschaftler erreichten dies durch die Ankopplung sogenannter Azobenzole, die eine charakteristische chemische Doppelbindung enthalten, an der sie – je nach Wellenlänge des Lichts, dem sie ausgesetzt sind – abknicken (cis-Form) oder sich strecken (trans-Form). Das auf diese Weise entstandene Azo-Capsazepin 4 (AC4) erwies sich dabei als besonders vielversprechender Kandidat für die lichtabhängige Steuerung von TRPV1, denn es beeinflusst den Ionenkanal gleich auf zweierlei Weise: „In der trans-Form wirkt AC4 der spannungsinduzierten Aktivierung von TRPV1 entgegen, während es in der cis-Form als Antagonist von Capsaicin die Stimulierung von TRPV1 die Wahrnehmung von Chilischärfe blockiert“, erklärt Trauner.

Neue Dimension in der Photopharmakologie

Damit erweitert AC4 das Konzept der Photopharmakologie – also den Einsatz photoschaltbarer Verbindungen zur Steuerung der Aktivität von Ionenkanälen und Rezeptoren - um eine zusätzliche Dimension: „Da AC4 als photoschaltbarer Antagonist einen Agonisten (hier Capsaicin) in lichtabhängiger Weise hemmen kann, lassen sich Agonist und photoschaltbarer Antagonist gleichzeitig anwenden“, sagt Trauner. Da AC4 darüber hinaus je nach Wellenlänge des Lichts selektiv bestimmte Reize blockiert, könnte es zudem wichtige Erkenntnisse für die genaue Erforschung der jeweiligen Aktivierungsmechanismen liefern.

Als nächstes wollen die Wissenschaftler weitere Anwendungen von AC4 – sowie ähnlichen Verbindungen – für sinnesphysiologische Fragestellungen entwickeln. „Darüber hinaus wollen wir überprüfen, ob unsere Verbindungen in der Retina eine Form der Lichtwahrnehmung nach sich ziehen – also potenziell zur Therapie gewisser Formen von Blindheit eingesetzt werden könnten“, erläutert Stein mögliche medizinische Einsatzmöglichkeiten der neuen Substanz.

(Angewandte Chemie 2013)