Anorganische Experimentalchemie 8. Übung: Edelgase & Halogene

1. Alle Halogene bilden Verbindungen der Formel HOX. Geben Sie die Struktur u den Namen der Verbindungen sowie die Oxidationszahl des jeweiligen Halogens	

3. Schreiben Sie die drei wichtigsten mesomeren Resonanzstrukturen für KrF	₂ an.
--	-------

2. Zu welcher Interhalogenverbindung ist das Fluoroxenyl-Kation isoelektronisch?

- 4. Welche neutralen binären Fluor-Verbindungen des Goldes kennt man?
- 5. Schreiben Sie eine gute Lewis-Formel für das CIO₂-Molekül an.
- 6. Geben Sie eine Definition für Hiberty-Gewichte (wii) an.
- 7. Vervollständigen Sie die folgende Reaktionsgleichung: 2 F⁻ + Cl₂ →
- 8. Erhitzt man Kaliumchlorat(V) so entsteht KCl und KClO₄.
- (a) Formulieren sie sie Reaktionsgleichung.
- (b) Beschreiben Sie die Struktur des Perchlorat(VII)-Anions.
- 9. Zeichnen Sie die Valenzstrichformeln für folgende Moleküle einschließlich der Formalladungen und benennen diese.
- a) PH₄+
- b) BH₄
- c) CH₄
- d) SiH₄
- e) SCS
- f) HCN
- g) HCCI₃
- h) OSCI₂
- i) Cl₂O₇
- j) O₂NF (N-Atom ist Zentralatom)

10. Wie viel Gramm HCl Gas können sie maximal erhalten, wenn sie 20 g Chlorgas und 3 L Wasserstoffgas zur Reaktion bringen.

Erstellen sie zuerst die Reaktionsgleichung. Wie kann die Reaktion gestartet werden? Skizzieren Sie den Energieverlauf ($\Delta_f H(HCI) = -92 \text{ kJ/mol}$)